A method for identification of nonlinear components of heat transer tensor for anisotropic materials
Matematičeskoe modelirovanie, Tome 26 (2014) no. 2, pp. 119-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the method for numerical solution of coefficient inverse problems of nonlinear heat transfer in anisotropic materials, used for heat shielding in aerodynamic heating of hypersonic craft (HC). At high temperatures the properties of anisotropic heat shield materials are characterized by nonlinear components of heat transfer tensor. It is necessary to identify and reconstruct these components by results of experimental measurements of temperature in spatial-temporal nodes. The proposed method is based upon alternate-directions method with extrapolation for heat transfer problems, method of parametric identification and gradient descent method. There are results for reconstruction of heat transfer tensor components of carbon-carbon composite yielded via experimental values of nonlinear heat conduction of such materials. This method can be used for reconstruction of other numerous thermophysical characteristics of composites. Results of numerical experiments for identification of heat transfer tensor components of composites in 2D computational space are obtained and discussed.
Keywords: inverse problems of heat transfer, heat conductivity, tensor of heat transfer, anisotropy, numerical methods.
Mots-clés : composite
@article{MM_2014_26_2_a9,
     author = {S. A. Kolesnik},
     title = {A method for identification of nonlinear components of heat transer tensor for anisotropic materials},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {119--132},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_2_a9/}
}
TY  - JOUR
AU  - S. A. Kolesnik
TI  - A method for identification of nonlinear components of heat transer tensor for anisotropic materials
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 119
EP  - 132
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_2_a9/
LA  - ru
ID  - MM_2014_26_2_a9
ER  - 
%0 Journal Article
%A S. A. Kolesnik
%T A method for identification of nonlinear components of heat transer tensor for anisotropic materials
%J Matematičeskoe modelirovanie
%D 2014
%P 119-132
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_2_a9/
%G ru
%F MM_2014_26_2_a9
S. A. Kolesnik. A method for identification of nonlinear components of heat transer tensor for anisotropic materials. Matematičeskoe modelirovanie, Tome 26 (2014) no. 2, pp. 119-132. http://geodesic.mathdoc.fr/item/MM_2014_26_2_a9/

[1] Alifanov O. M., Identifikatsiya protsessov teploobmena letatelnykh apparatov (vvedenie v teoriyu obratnykh zadach), Mashinostroenie, M., 1979, 216 pp.

[2] Beck J. V., Blachwell B., St. Clar C. R., Inverse Heat Conduction. Ill-posed Problems, A. Wiley Interscience Publication, N.-Y., 1985, 308 pp. | Zbl

[3] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Izd-vo LKI, M., 2009, 480 pp.

[4] Kuznetsova E. L., “Vosstanovlenie kharakteristik tenzora teploprovodnosti na osnove analiticheskogo resheniya zadachi teploperenosa v anizotropnom poluprostranstve”, Teplofizika vysokikh temperatur, 49:6 (2011), 1–8 | MR

[5] Formalev V. F., “Teplomassoperenos v anizotropnykh telakh”, Obzor, Teplofizika vysokikh temperatur, 39:5 (2001), 810–832

[6] Kriksin Yu. A., Plyuschev S. N., Samarskaya E. A., Tishkin V. F., “Obratnaya zadacha vosstanovleniya istochnika dlya uravneniya konvektivnoi diffuzii”, Matematicheskoe modelirovanie, 7:11 (1995), 95

[7] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “Operatornye raznostnye skhemy”, Differentsialnye uravneniya, 17:7 (1981), 1317

[8] Formalev V. F., Reviznikov D. L., Chislennye metody, Fizmatlit, M., 2006, 400 pp.

[9] Formalev V. F., Kolesnik S. A., Chipashvili A. A., “Chislennoe modelirovanie teploperenosa v anizotropnykh telakh s razryvnymi kharakteristikami”, Matematicheskoe modelirovanie, 165 (2004), 94–102

[10] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995 | MR