The high smooth continuations for Fourier approximations of non-periodic functions
Matematičeskoe modelirovanie, Tome 26 (2014) no. 2, pp. 108-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximation of functions by Fourier series plays an important role in many applied problems of digital signal processing. It is shown how it is expedient to construct the mean-square approximation of high accuracy Fourier series for nonperiodic functions. The method uses subtraction of specially selected features that enhance the smoothness of the periodic continuation of the approximated function. The main advantage of the method is that segment of the job function is taken as half of the period, and not for the whole period. This allows to do twice as better smoothness of periodic continuation. The effectiveness of the method is illustrated on the test functions of one or two variables.
Mots-clés : Fourier approximation
Keywords: non-periodic functions, high accuracy.
@article{MM_2014_26_2_a8,
     author = {R. V. Golovanov and N. N. Kalitkin},
     title = {The high smooth continuations for {Fourier} approximations of non-periodic functions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {108--118},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_2_a8/}
}
TY  - JOUR
AU  - R. V. Golovanov
AU  - N. N. Kalitkin
TI  - The high smooth continuations for Fourier approximations of non-periodic functions
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 108
EP  - 118
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_2_a8/
LA  - ru
ID  - MM_2014_26_2_a8
ER  - 
%0 Journal Article
%A R. V. Golovanov
%A N. N. Kalitkin
%T The high smooth continuations for Fourier approximations of non-periodic functions
%J Matematičeskoe modelirovanie
%D 2014
%P 108-118
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_2_a8/
%G ru
%F MM_2014_26_2_a8
R. V. Golovanov; N. N. Kalitkin. The high smooth continuations for Fourier approximations of non-periodic functions. Matematičeskoe modelirovanie, Tome 26 (2014) no. 2, pp. 108-118. http://geodesic.mathdoc.fr/item/MM_2014_26_2_a8/

[1] Krylov A. N., O priblizhennykh vychisleniyakh, Lektsii, chitannye v 1906 g., Tipilitogr. K. Berkenfelda, Spb., 1907, 228 pp.

[2] Adcock B., Modified Fourier expansions: theory, construction and application, Trinity Hall University of Cambridge, 2010

[3] Akhmed N., Rao K., Ortogonalnye preobrazovaniya pri obrabotke tsifrovykh signalov, Per. s angl., Svyaz, M., 1980

[4] Lantsosh K., Prakticheskie metody prikladnogo analiza, Perevod s angl., Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, 1961

[5] Kalitkin N. N., Lutskii K. I., “Metod nechetnogo prodolzheniya dlya fure-approksimatsii neperiodicheskikh funktsii”, DAN, 441:1 (2011), 19–23 | Zbl

[6] Golovanov R. V., Kalitkin N. N., Lutskii K. I., “Nechetnoe prodolzhenie dlya fure-approksimatsii neperiodicheskikh funktsii”, Matem. modelirovanie, 25:5 (2013), 67–84 | MR

[7] Kalitkin N. N., Golovanov R. V., “Prodolzheniya povyshennoi gladkosti dlya fure-approksimatsii neperiodicheskoi funktsii”, DAN, 451:4 (2013), 385–388 | MR | Zbl

[8] Kalitkin N. N., Lutskii K. I., “Approksimatsiya gladkikh poverkhnostei metodom dvoinogo perioda”, Matem. modelirovanie, 22:2 (2010), 64–68 | Zbl