Transport type multi-index minimax models and stream methods of their decision
Matematičeskoe modelirovanie, Tome 26 (2014) no. 2, pp. 95-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered class of the problems of the transport type, in which points production contains certain resource, passing multistage processing in intermediate points before arrival in points of destination. The temporary losses are taken into account on intermediate processing. The possible rules of the motion resource are considered through points of the intermediate processing, defining type to target function. For decision of the problems about maximum flow is offered use the auxiliary two-dimensional matrixes. The considered possibilities of the using the models in automated decision support system MPS RF.
Keywords: transport task, the minimum of total time, points of the intermediate processing.
@article{MM_2014_26_2_a7,
     author = {N. M. Nechitaylo},
     title = {Transport type multi-index minimax models and stream methods of their decision},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--107},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_2_a7/}
}
TY  - JOUR
AU  - N. M. Nechitaylo
TI  - Transport type multi-index minimax models and stream methods of their decision
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 95
EP  - 107
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_2_a7/
LA  - ru
ID  - MM_2014_26_2_a7
ER  - 
%0 Journal Article
%A N. M. Nechitaylo
%T Transport type multi-index minimax models and stream methods of their decision
%J Matematičeskoe modelirovanie
%D 2014
%P 95-107
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_2_a7/
%G ru
%F MM_2014_26_2_a7
N. M. Nechitaylo. Transport type multi-index minimax models and stream methods of their decision. Matematičeskoe modelirovanie, Tome 26 (2014) no. 2, pp. 95-107. http://geodesic.mathdoc.fr/item/MM_2014_26_2_a7/

[1] Golshtein E. G., Yudin D. B., Zadachi lineinogo programmirovaniya transportnogo tipa, Nauka, GRFML, M., 1969, 384 pp.

[2] Zukhovitskii S. I., Avdeeva L. I., Lineinoe i vypukloe programmirovanie, Nauka, GRFML, M., 1969, 382 pp.

[3] Korbut A. A., Finkelshtein Yu. Yu., Diskretnoe programmirovanie, Nauka, GRFML, M., 1969, 368 pp. | MR | Zbl

[4] Zolotukhin V. F., Nechitailo N. M., “Reshenie zadach perevozok s promezhutochnoi obrabotkoi po kriteriyu minimuma obschego vremeni”, Izvestiya vysshikh uchebnykh zavedenii Severo-Kavkazskii region. Estestvennye nauki, 1993, no. 1–2, 4–13

[5] Zolotukhin V. F., Martemyanov S. V., Nechitailo N. M., “Reshenie mnogostadiinoi transportnoi zadachi po kriteriyu obschego vremeni algoritmom znakov”, Izvestiya vysshikh uchebnykh zavedenii Severo-Kavkazskii region. Estestvennye nauki, 1995, no. 2, 17–23

[6] Zolotukhin V. F., Osnovy obschei teorii sistem, v. II, Elementy teorii prinyatiya reshenii, MO, Rostov n/D, 1993, 150 pp.

[7] Trius E. B., Zadachi matematicheskogo programmirovaniya transportnogo tipa, Nauka, M., 1967, 208 pp.

[8] Zak Yu. A., Prikladnye zadachi teorii raspisanii i marshrutizatsii perevozok, Librokom, M., 2012, 394 pp.

[9] Shabelnikov A. N., Intellektualnye sistemy upravleniya na zheleznodorozhnom transporte, Monografiya, Rostov-na-Donu, 2004, 214 pp.

[10] Shabelnikov A. N., Lyabakh N. N., Sokolov V. N., Odikadze V. R., Sachko V. I., Kompleks gorochnyi: sostoyanie i perspektivy razvitiya, Uchebnoe posobie, RGUPS, Rostov-na-Donu, 2009, 57 pp.