Method of numerical investigation of saline groundwater dynamics
Matematičeskoe modelirovanie, Tome 26 (2014) no. 2, pp. 50-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical method for solving unsteady problems on two-component fluid dynamics in a porous medium that model transport of salt, dissolved in ground water, is developed. A mathematical model consists of the continuity equation, the Darcy’s low with the gravity, the salt diffusivity equation and the linear equation of state relating the solution density to the salt density. The numerical code is based on the finite-difference method realized on a straggled nonuniform grid. The continuity and Darcy’s equations are integrated with the use of the SIMPLE-type algorithm, then the salt transport equation is solved. The designed code is tested by solving three benchmark problems including diffusion of salt, transport of salt by the upflow and concentration convection.
Keywords: numerical hydrodynamics, flows in porous media, SIMPLE-type algorithm.
Mots-clés : concentration convection, diffusion
@article{MM_2014_26_2_a4,
     author = {E. B. Soboleva},
     title = {Method of numerical investigation of saline groundwater dynamics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {50--64},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_2_a4/}
}
TY  - JOUR
AU  - E. B. Soboleva
TI  - Method of numerical investigation of saline groundwater dynamics
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 50
EP  - 64
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_2_a4/
LA  - ru
ID  - MM_2014_26_2_a4
ER  - 
%0 Journal Article
%A E. B. Soboleva
%T Method of numerical investigation of saline groundwater dynamics
%J Matematičeskoe modelirovanie
%D 2014
%P 50-64
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_2_a4/
%G ru
%F MM_2014_26_2_a4
E. B. Soboleva. Method of numerical investigation of saline groundwater dynamics. Matematičeskoe modelirovanie, Tome 26 (2014) no. 2, pp. 50-64. http://geodesic.mathdoc.fr/item/MM_2014_26_2_a4/

[1] Tsypkin G. G., Techeniya s fazovymi perekhodami v poristykh sredakh, Fizmatlit, M., 2009, 232 pp. | Zbl

[2] Vabischevich P. N., “Yavno-neyavnye algoritmy dlya zadach mnogofaznoi filtratsii”, Matematicheskoe modelirovanie, 22:4 (2010), 118–128 | Zbl

[3] Il'ichev A. T., Tsypkin G. G., Pritchard D., Richardson Ch. N., “Instability of the salinity profile during the evaporation of saline groundwater”, J. Fluid Mech., 614 (2008), 87–104 | DOI | MR

[4] Vasilev V. I., Maksimov A. M., Petrov E. E., Tsypkin G. G., Teplomassoperenos v promerzayuschikh i protaivayuschikh gruntakh, Fizmatlit, M., 1996, 224 pp.

[5] Vabischevich P. N., Chislennye metody resheniya zadach so svobodnoi granitsei, Izd-vo Mosk. un-ta, M., 1987, 164 pp. | MR

[6] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoizdat, M., 1984, 152 pp.

[7] Soboleva E. B., Kryukov I. A., “Teplomassoobmen v okolokriticheskoi zhidkosti s uravneniem sostoyaniya v priblizhenii srednego polya”, Matematicheskoe modelirovanie, 12:7 (2000), 87–96 | MR | Zbl

[8] Soboleva E. B., Kryukov I. A., “Teplo- i massoobmen v okolokriticheskoi srede pri malykh chislakh Makha”, Matematicheskoe modelirovanie, 12:10 (2000), 31–45 | MR | Zbl

[9] Polezhaev V. I., Soboleva E. B., “Konvektsiya Releya–Benara v okolokriticheskoi zhidkosti vblizi poroga ustoichivosti”, Izv. RAN. Mekhanika zhidkosti i gaza, 2005, no. 2, 48–61 | MR

[10] Soboleva E. B., “Adiabatic heating and convection in a porous medium filled with a near-critical fluid”, Annals of the New York Academy of Sciences, 1161 (2009), 117–134 | DOI

[11] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986, 736 pp. | MR