Modeling of 3D seismic problems using high-performance computing
Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 83-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this work is the numerical modeling of some problems of seismology in three dimensions on high-performance computing systems. As a method of modeling uses grid-characteristic method. This method allows to set up accurate statement of contact conditions and is suitable for the most physically correct solution of the problems of seismology and seismic prospecting in complex heterogeneous mediums. We use the grid-characteristic schemes up to 4-th order inclusive. Development program solving enviroment parallelized using MPI technology for distributing memory clusters. The results of modeling of surface seismic Love and Rayleigh waves, as well as the passage of seismic waves from an earthquake hypocenter initiated by earthquake to the earth's surface through a multilayer geological formations.
Keywords: computer simulation, systems of hyperbolic partial differential equations, HPC, MPI, sufrace seismic waves.
@article{MM_2014_26_1_a6,
     author = {I. B. Petrov and N. I. Khokhlov},
     title = {Modeling of {3D} seismic problems using high-performance computing},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_1_a6/}
}
TY  - JOUR
AU  - I. B. Petrov
AU  - N. I. Khokhlov
TI  - Modeling of 3D seismic problems using high-performance computing
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 83
EP  - 95
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_1_a6/
LA  - ru
ID  - MM_2014_26_1_a6
ER  - 
%0 Journal Article
%A I. B. Petrov
%A N. I. Khokhlov
%T Modeling of 3D seismic problems using high-performance computing
%J Matematičeskoe modelirovanie
%D 2014
%P 83-95
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_1_a6/
%G ru
%F MM_2014_26_1_a6
I. B. Petrov; N. I. Khokhlov. Modeling of 3D seismic problems using high-performance computing. Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 83-95. http://geodesic.mathdoc.fr/item/MM_2014_26_1_a6/

[1] Magomedov K. M., Kholodov A. S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988, 288 pp. | MR

[2] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 46:9 (2006), 1560–1588 | MR

[3] Petrov I. B., Tormasov A. G., Kholodov A. S., “O chislennom izuchenii nestatsionarnykh protsessov v deformiruemykh sredakh mnogosloinoi struktury”, Izvestiya AN SSSR. Mekhanika tverdogo tela, 1989, no. 4, 89–95

[4] Kvasov I. E., Pankratov S. A., Petrov I. B., “Chislennoe modelirovanie seismicheskikh otklikov v mnogosloinykh geologicheskikh sredakh setochno-kharakteristicheskim metodom”, Matematicheskoe modelirovanie, 22:9 (2010), 13–21

[5] MPI Forum. Message Passing Interface (MPI) Forum Home Page, 2009 http://www.mpi-forum.org/

[6] Petrov I. B., Kholodov A. S., “Chislennoe issledovanie nekotorykh dinamicheskikh zadach mekhaniki deformiruemogo tverdogo tela setochno-kharakteristicheskim metodom”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 24:5 (1984), 722–739 | MR | Zbl

[7] Magomedov K. M., Kholodov A. S., “O postroenii raznostnykh skhem dlya uravnenii giperbolicheskogo tipa na osnove kharakteristicheskikh sootnoshenii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 9:2 (1969), 373–386 | MR | Zbl

[8] Ami Harten, “High resolution schemes for hyperbolic conservation laws”, J. of Comp. Physics, 135:2 (1997), 260–278 | DOI | MR | Zbl

[9] Petrov I. B., Khokhlov N. I., “Sravnenie TVD limiterov dlya chislennogo resheniya uravnenii dinamiki deformiruemogo tverdogo tela setochno-kharakteristicheskim metodom”, Matematicheskie modeli i zadachi upravleniya, Sb. nauch. tr., MFTI, 2011, 104–111

[10] Roe P. L., “Characteristic-Based Schemes for the Euler Equations”, Annual Review of Fluid Mechanics, 1986, no. 18, 337–365 | DOI | MR | Zbl

[11] Gorshkov A. G., Medvedskii A. L., Rabinskii L. N., Tarlakovskii D. V., Volny v sploshnykh sredakh, Fizmatlit, M., 2004

[12] Brekhovskikh L. M., Goncharov V. V., Vvedenie v mekhaniku sploshnykh sred, Nauka, M., 1982