An effective iterative method for saddle point problems
Matematičeskoe modelirovanie, Tome 26 (2014) no. 12, pp. 116-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective algorithm for solution of a large saddle-point problem is proposed. This method is the modification of the Hermitian–Skew-hermition iterations. Method is applied for the solution of the constrained optimization problems. Numerical experiments have confirmed the effectiveness of this technique.
Keywords: saddle-point system, iterative methods, constrained optimization.
@article{MM_2014_26_12_a8,
     author = {L. A. Krukier and T. S. Martynova},
     title = {An effective iterative method for saddle point problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {116--126},
     publisher = {mathdoc},
     volume = {26},
     number = {12},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_12_a8/}
}
TY  - JOUR
AU  - L. A. Krukier
AU  - T. S. Martynova
TI  - An effective iterative method for saddle point problems
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 116
EP  - 126
VL  - 26
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_12_a8/
LA  - ru
ID  - MM_2014_26_12_a8
ER  - 
%0 Journal Article
%A L. A. Krukier
%A T. S. Martynova
%T An effective iterative method for saddle point problems
%J Matematičeskoe modelirovanie
%D 2014
%P 116-126
%V 26
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_12_a8/
%G ru
%F MM_2014_26_12_a8
L. A. Krukier; T. S. Martynova. An effective iterative method for saddle point problems. Matematičeskoe modelirovanie, Tome 26 (2014) no. 12, pp. 116-126. http://geodesic.mathdoc.fr/item/MM_2014_26_12_a8/

[1] Benzi M., Golub G., Liesen J., “Numerical solution of saddle point problems”, Acta Numerica, 14 (2005), 1–137 | DOI | Zbl

[2] Bychenkov Yu. V., Chizhonkov E. V., Iteratsionnye metody resheniya sedlovykh zadach, BINOM, M., 2010, 342 pp.

[3] Krukier L. A., Krukier B. L., Ren Z.-R., “Generalized skew-hermitian triangular splitting iteration methods for saddle-point linear systems”, Numerical Linear Algebra with Applications, 21:1 (2014), 152–170, Article first published online: 25 JAN 2013 | DOI

[4] Bai Z.-Z., Parlett B. N., Wang Z.-Q., “On generalized successive overrelaxation methods for augmented linear systems”, Numer. Math., 102 (2005), 1–38 | DOI | Zbl

[5] Dollar H., Iterative linear algebra for constrained optimization, PhD-thesis, University of Oxford, 2005

[6] Benzi M., Golub G. H., “A preconditioner for generalized saddle point problems”, SIAM J. Matrix Anal. Appl., 26 (2004), 20–41 | DOI | Zbl

[7] Benzi M., Simoncini V., “On the Eigenvalues of a class of saddle point matrices”, Numer. Math., 103 (2006), 173–196 | DOI | Zbl

[8] Bai Z.-Z., Golub G. H., Pan J.-Y., “Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems”, Numer. Math., 98 (2004), 1–32 | DOI | Zbl

[9] Botchev M. A., Golub G. H., “A class of nonsymmetric preconditioners for saddle point problems”, SIAM Journal on Matrix Analysis and Applications, 27:4 (2006), 1125–1149 | DOI | Zbl

[10] Glowinski R., Le Tallec P., Augmented Lagrangian and operator splitting methods in nonlinear mechanics, SIAM, 1989, 295 pp.

[11] Golub G. H., Greif C., “On solving block-structured indefinite linear systems”, SIAM Journal on Scientific Computing, 24:6 (2003), 2076–2092 | DOI | Zbl

[12] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp.

[13] Taussky O., “Positive-definite matrices and their role in the study of the characteristic roots of general matrices”, Adv. Math., 2 (1968), 175–186 | DOI | Zbl

[14] Bochev M. A., Krukier L. A., “Ob iteratsionnom reshenii silno nesimmetrichnykh sistem lineinykh algebraicheskikh uravnenii”, ZhVMiMF, 37:11 (1997), 1283–1293 | Zbl

[15] Bai Z. Z., Krukier L. A., Martynova T. S., “Dvukhshagovye iteratsionnye metody resheniya statsionarnogo uravneniya konvektsii-diffuzii s malym parametrom pri starshei proizvodnoi na ravnomernoi setke”, ZhVMiMF, 46:2 (2006), 295–306 | Zbl

[16] Krukier L. A., Martinova T. S., Bai Z.-Z., “Product-Type Skew-Hermitian Triangular Splitting Iteration Methods for Strongly Non-Hermitian Positive Definite Linear Systems”, Journal of Computational and Applied Mathematics, 232:1 (2009), 3–16 | DOI | Zbl