Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_12_a8, author = {L. A. Krukier and T. S. Martynova}, title = {An effective iterative method for saddle point problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {116--126}, publisher = {mathdoc}, volume = {26}, number = {12}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_12_a8/} }
L. A. Krukier; T. S. Martynova. An effective iterative method for saddle point problems. Matematičeskoe modelirovanie, Tome 26 (2014) no. 12, pp. 116-126. http://geodesic.mathdoc.fr/item/MM_2014_26_12_a8/
[1] Benzi M., Golub G., Liesen J., “Numerical solution of saddle point problems”, Acta Numerica, 14 (2005), 1–137 | DOI | Zbl
[2] Bychenkov Yu. V., Chizhonkov E. V., Iteratsionnye metody resheniya sedlovykh zadach, BINOM, M., 2010, 342 pp.
[3] Krukier L. A., Krukier B. L., Ren Z.-R., “Generalized skew-hermitian triangular splitting iteration methods for saddle-point linear systems”, Numerical Linear Algebra with Applications, 21:1 (2014), 152–170, Article first published online: 25 JAN 2013 | DOI
[4] Bai Z.-Z., Parlett B. N., Wang Z.-Q., “On generalized successive overrelaxation methods for augmented linear systems”, Numer. Math., 102 (2005), 1–38 | DOI | Zbl
[5] Dollar H., Iterative linear algebra for constrained optimization, PhD-thesis, University of Oxford, 2005
[6] Benzi M., Golub G. H., “A preconditioner for generalized saddle point problems”, SIAM J. Matrix Anal. Appl., 26 (2004), 20–41 | DOI | Zbl
[7] Benzi M., Simoncini V., “On the Eigenvalues of a class of saddle point matrices”, Numer. Math., 103 (2006), 173–196 | DOI | Zbl
[8] Bai Z.-Z., Golub G. H., Pan J.-Y., “Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems”, Numer. Math., 98 (2004), 1–32 | DOI | Zbl
[9] Botchev M. A., Golub G. H., “A class of nonsymmetric preconditioners for saddle point problems”, SIAM Journal on Matrix Analysis and Applications, 27:4 (2006), 1125–1149 | DOI | Zbl
[10] Glowinski R., Le Tallec P., Augmented Lagrangian and operator splitting methods in nonlinear mechanics, SIAM, 1989, 295 pp.
[11] Golub G. H., Greif C., “On solving block-structured indefinite linear systems”, SIAM Journal on Scientific Computing, 24:6 (2003), 2076–2092 | DOI | Zbl
[12] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp.
[13] Taussky O., “Positive-definite matrices and their role in the study of the characteristic roots of general matrices”, Adv. Math., 2 (1968), 175–186 | DOI | Zbl
[14] Bochev M. A., Krukier L. A., “Ob iteratsionnom reshenii silno nesimmetrichnykh sistem lineinykh algebraicheskikh uravnenii”, ZhVMiMF, 37:11 (1997), 1283–1293 | Zbl
[15] Bai Z. Z., Krukier L. A., Martynova T. S., “Dvukhshagovye iteratsionnye metody resheniya statsionarnogo uravneniya konvektsii-diffuzii s malym parametrom pri starshei proizvodnoi na ravnomernoi setke”, ZhVMiMF, 46:2 (2006), 295–306 | Zbl
[16] Krukier L. A., Martinova T. S., Bai Z.-Z., “Product-Type Skew-Hermitian Triangular Splitting Iteration Methods for Strongly Non-Hermitian Positive Definite Linear Systems”, Journal of Computational and Applied Mathematics, 232:1 (2009), 3–16 | DOI | Zbl