Evaluation of expectations of random functionals
Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 29-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach to approximate evaluation of a class of nonlinear random functionals based on using the chaos expansion is developed.
Keywords: stochastic processes, random functionals, approximate evaluation, chaos expansions.
@article{MM_2014_26_11_a3,
     author = {A. D. Egorov},
     title = {Evaluation of expectations of random functionals},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {29--32},
     publisher = {mathdoc},
     volume = {26},
     number = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a3/}
}
TY  - JOUR
AU  - A. D. Egorov
TI  - Evaluation of expectations of random functionals
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 29
EP  - 32
VL  - 26
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_11_a3/
LA  - en
ID  - MM_2014_26_11_a3
ER  - 
%0 Journal Article
%A A. D. Egorov
%T Evaluation of expectations of random functionals
%J Matematičeskoe modelirovanie
%D 2014
%P 29-32
%V 26
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_11_a3/
%G en
%F MM_2014_26_11_a3
A. D. Egorov. Evaluation of expectations of random functionals. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 29-32. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a3/

[1] Egorov A. D., Sobolevsky P. I., Yanovich L. A., Functional Integrals: Approximate Evaluation and Applications, Kluwer Academic Publishers, 1993, 418 pp. | MR | Zbl

[2] Egorov A. D., Zhidkov E. P., Lobanov Yu. Yu., Introduction to the theory and applications of functional integration, Fizmatlit, M., 2006, 400 pp. (in Russian)

[3] Egorov A. D., Sabelfeld K., “Approximate formulas for expectations of functionals of solutions to stochastic differential equations”, Monte Carlo Methods and Applications, 18 (2009), 95–127 | MR

[4] Xiu D., Karniadakis G. E., “The Wiener–Askey polynomial chaos for stochastic differential equations”, SIAM J. Sci. Comput., 24:2 (2002), 619–644 | DOI | MR | Zbl

[5] Lototsky S. V., Rozovskii B. L., “Wiener chaos solutions of linear stochastic equations”, Annals of Probability, 34:2 (2006), 638–662 | DOI | MR | Zbl

[6] Wuan Luo, Wiener chaos expansion and numerical solutions of stochastic partial differential equations, Thesis, California Institute of Technology, 2006 | MR