Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_11_a3, author = {A. D. Egorov}, title = {Evaluation of expectations of random functionals}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {29--32}, publisher = {mathdoc}, volume = {26}, number = {11}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a3/} }
A. D. Egorov. Evaluation of expectations of random functionals. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 29-32. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a3/
[1] Egorov A. D., Sobolevsky P. I., Yanovich L. A., Functional Integrals: Approximate Evaluation and Applications, Kluwer Academic Publishers, 1993, 418 pp. | MR | Zbl
[2] Egorov A. D., Zhidkov E. P., Lobanov Yu. Yu., Introduction to the theory and applications of functional integration, Fizmatlit, M., 2006, 400 pp. (in Russian)
[3] Egorov A. D., Sabelfeld K., “Approximate formulas for expectations of functionals of solutions to stochastic differential equations”, Monte Carlo Methods and Applications, 18 (2009), 95–127 | MR
[4] Xiu D., Karniadakis G. E., “The Wiener–Askey polynomial chaos for stochastic differential equations”, SIAM J. Sci. Comput., 24:2 (2002), 619–644 | DOI | MR | Zbl
[5] Lototsky S. V., Rozovskii B. L., “Wiener chaos solutions of linear stochastic equations”, Annals of Probability, 34:2 (2006), 638–662 | DOI | MR | Zbl
[6] Wuan Luo, Wiener chaos expansion and numerical solutions of stochastic partial differential equations, Thesis, California Institute of Technology, 2006 | MR