Methods of numerical analysis for investigation of reversible shock structures in media with complex dispersion
Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 23-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

Basic concepts of the theory of reversible shocks are presented. Solutions of partial differential differential equations that describe arbitrary shock split are analyzed. Methods to solve Cauchy problem by means of solving of boundary problem are investigated. New approach to derivation of averaged equations and new classification of reversible shocks are given.
Keywords: shock structure, dissipation, numerical analysis.
Mots-clés : dispersion
@article{MM_2014_26_11_a2,
     author = {I. B. Bakholdin},
     title = {Methods of numerical analysis for investigation of reversible shock structures in media with complex dispersion},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {23--28},
     publisher = {mathdoc},
     volume = {26},
     number = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a2/}
}
TY  - JOUR
AU  - I. B. Bakholdin
TI  - Methods of numerical analysis for investigation of reversible shock structures in media with complex dispersion
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 23
EP  - 28
VL  - 26
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_11_a2/
LA  - ru
ID  - MM_2014_26_11_a2
ER  - 
%0 Journal Article
%A I. B. Bakholdin
%T Methods of numerical analysis for investigation of reversible shock structures in media with complex dispersion
%J Matematičeskoe modelirovanie
%D 2014
%P 23-28
%V 26
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_11_a2/
%G ru
%F MM_2014_26_11_a2
I. B. Bakholdin. Methods of numerical analysis for investigation of reversible shock structures in media with complex dispersion. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 23-28. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a2/

[1] Bakholdin I. B., Bezdissipativnye razryvy v mekhanike sploshnoi sredy, Fizmatlit, M., 2004, 318 pp.

[2] Bakholdin I. B., “Statsionarnye i nestatsionarnye struktury razryvov dlya modelei, opisyvaemykh obobschennym uravneniem Kortevega–Byurgersa”, Prikladnaya matematika i mekhanika, 75:2 (2011), 271–302 | MR | Zbl

[3] Bakholdin I. B., “Metody issledovaniya, teoriya i klassifikatsiya obratimykh struktur razryvov v modelyakh gidrodinamicheskogo tipa”, Preprinty IPM, 2013, 030, 40 pp.

[4] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979, 432 pp. | MR | Zbl

[5] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR | Zbl

[6] Rouch P. Dzh., Vychislitelnaya gidrodinamika, Mir, M., 1980, 616 pp. | Zbl

[7] Kulikovskii A. G., Sveshnikova E. I., Nelineinye volny v uprugikh sredakh, Moskovskii Litsei, M., 1998, 412 pp.