Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_11_a17, author = {T. E. Romanenko and A. V. Razgulin}, title = {On modeling of distortions suppression in nonlinear optical system with delayed feedback loop}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {123--136}, publisher = {mathdoc}, volume = {26}, number = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a17/} }
TY - JOUR AU - T. E. Romanenko AU - A. V. Razgulin TI - On modeling of distortions suppression in nonlinear optical system with delayed feedback loop JO - Matematičeskoe modelirovanie PY - 2014 SP - 123 EP - 136 VL - 26 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2014_26_11_a17/ LA - ru ID - MM_2014_26_11_a17 ER -
%0 Journal Article %A T. E. Romanenko %A A. V. Razgulin %T On modeling of distortions suppression in nonlinear optical system with delayed feedback loop %J Matematičeskoe modelirovanie %D 2014 %P 123-136 %V 26 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2014_26_11_a17/ %G ru %F MM_2014_26_11_a17
T. E. Romanenko; A. V. Razgulin. On modeling of distortions suppression in nonlinear optical system with delayed feedback loop. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 123-136. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a17/
[1] Tyson R. K., Principles of adaptive optics, 3rd ed., CRC Press, 2010
[2] Vorontsov M. A., Koryabin A. V., Shmalgauzen V. I., Upravlyaemye opticheskie sistemy, Nauka, M., 1988
[3] Vorontsov M. A., Katulin V. A., Naumov A. F., “Wavefront control by an optical-feedback interferometer”, Optics Communications, 71:1–2 (1989), 35–38 | DOI
[4] Barnes T., Eiju T., Matsuda K., “High resolution adaptive optics using an interference phase loop”, Optics Communications, 132 (1996), 494–502 | DOI
[5] Fisher A. D., Warde C., “Technique for real-time high-resolution adaptive phase compensation”, Optics Letters, 8:7 (1983), 353–355 | DOI
[6] Vorontsov M. A., Kirakosyan M. E., Larichev A. V., “Korrektsiya fazovykh iskazhenii v nelineinom interferometre s opticheskoi obratnoi svyazyu”, Kvantovaya elektronika, 18 (1991), 117–120
[7] Vorontsov M. A., Larichev A. V., “Intelligent laser systems: adaptive compensation of phase distortions in nonlinear system with two-dimensional feedback”, Nonlinear Optics, Proc. SPIE, 1409, 1991, 260–266 | DOI
[8] Larichev A. V., Dinamicheskie protsessy v nelineinykh opticheskikh sistemakh s dvumernoi obratnoi svyazyu, Dis. ... kand. fiz.-matem. nauk po spetsialnosti 01.04.21, MGU im. M. V. Lomonosova, M., 1995, 108 pp.
[9] Vorontsov M. A., Zheleznykh N. I., Ivanov V. Yu., “Transverse interactions in the 2-D feedback non-linear optical systems”, Optical and Quantum Electronics, 2 (1990), 501–515 | DOI
[10] Vorontsov M. A., Shishakov K. V., “Phase-distortion suppression in nonlinear cavities with gain”, J. of the Optical Society of America, 9 (1992), 71–77 | DOI
[11] Dou R., Vorontsov M. A., Sivokon V. P., Giles M. K., “Iterative technique for high-resolution phase distortion compensation in adaptive interferometers”, Optical Eng., 36:12 (1997), 3327–3335 | DOI
[12] Chesnokov S. S., Rybak A. A., “Spatiotemporal Chaotic behavior of time-delayed nonlinear optical systems”, Laser Physics, 10:5 (2000), 1061–1068
[13] Chesnokov S., Rybak A., Stadnichuk V., “Rezhimy opticheskoi turbulentnosti v nelineino-opticheskoi sisteme s zaderzhkoi v tsepi raspredelennoi obratnoi svyazi”, Optika atmosfery i okeana, 15:7 (2002), 572–578
[14] Vorontsov M. A., Iroshnikov N. G., “Nonlinear dynamics of neuromorphic optical system with spatio-temporal interactions”, Optical Memory and Neural Networks, Proc. SPIE, 1621, 1991, 292–298 | DOI
[15] Razgulin A. V., Romanenko T. E., “Vraschayuschiesya volny v parabolicheskom funktsionalno-differentsialnom uravnenii s povorotom prostranstvennogo argumenta i zapazdyvaniem”, Zhurn. vychislit. matematiki i mat. fiziki, 53:11 (2013), 42–60
[16] Romanenko T. E., “Dvumernye vraschayuschiesya volny v funktsionalno-differentsialnom uravnenii diffuzii s povorotom prostranstvennykh argumentov i zapazdyvaniem”, Differentsialnye uravneniya, 50:2 (2014), 260–263 | DOI | Zbl
[17] Razgulin A. V., “Finite-dimensional dynamics of distributed optical system with delayed feedback”, Comput. Math. Appl., 40:12 (2000), 1405–1418 | DOI | MR | Zbl
[18] Wu J., Theory and applications of partial functional differential equations, Springer-Verlag, New York, 1996 | MR
[19] Hale J., Theory of functional differential equations, Springer, New York, 1977 | MR | Zbl
[20] Pontryagin L. S., “O nulyakh nekotorykh elementarnykh transtsendentnykh funktsii”, Izvestiya akademii nauk SSSR, 1942, no. 6, 115–134 | MR
[21] Noonburg V. W., “Roots of a transcendental equation associated with a system of differential-difference equations”, SIAM J. Appl. Math., 17:1 (1969), 198–205 | DOI | MR | Zbl
[22] He Q., Kanga L., Evans D. J., “Convergence and stability of the finite difference scheme for nonlinear parabolic systems with time delay”, Numerical Algorithms, 16 (1997), 129–153 | DOI | MR
[23] Pao C. V., “Numerical methods for systems of nonlinear parabolic equations with time delays”, Journal of Mathematical Analysis and Applications, 240:1 (1999), 249–279 | DOI | MR | Zbl
[24] Lekomtsev A. V., Pimenov V. G., “Convergence of the alternating direction method for the numerical solution of a heat conduction equation with delay”, Proceedings of the Steklov Institute of Mathematics, 272, 2011, S101–S118 | DOI
[25] Kamont Z., Kropielnicka K., “Implicit difference methods for evolution functional differential equations”, Numerical Analysis and Applications, 4:4 (2011), 294–308 | DOI | Zbl
[26] Razgulin A. V., “Proektsionno-raznostnaya skhema dlya parabolicheskogo funktsionalno-differentsialnogo uravneniya s dvumernym preobrazovaniem argumentov”, Zhurn. vychislit. matematiki i mat. fiziki, 45:10 (2005), 1848–1859 | MR | Zbl