On a class of interpolation polynomials for nonlinear ordinary differential operators
Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 90-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the construction of Lagrange interpolation formulas and formulas of Hermite type with knots of second multiplicity for ordinary differential operators of arbitrary order given in the space of continuously differentiable functions. Obtained formulas contain Stieltjes integrals and differentials Gateaux of interpolated operator. These formulas are invariant for the operator polynomials of a special class. The construction of operator interpolation formulas is based on interpolation polynomials for scalar functions.
Keywords: operator interpolation, operator polynomial
Mots-clés : Lagrange and Hermite type interpolation, interpolation error.
@article{MM_2014_26_11_a13,
     author = {L. A. Yanovich and M. V. Ignatenko},
     title = {On a class of interpolation polynomials for nonlinear ordinary differential operators},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {90--96},
     publisher = {mathdoc},
     volume = {26},
     number = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a13/}
}
TY  - JOUR
AU  - L. A. Yanovich
AU  - M. V. Ignatenko
TI  - On a class of interpolation polynomials for nonlinear ordinary differential operators
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 90
EP  - 96
VL  - 26
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_11_a13/
LA  - ru
ID  - MM_2014_26_11_a13
ER  - 
%0 Journal Article
%A L. A. Yanovich
%A M. V. Ignatenko
%T On a class of interpolation polynomials for nonlinear ordinary differential operators
%J Matematičeskoe modelirovanie
%D 2014
%P 90-96
%V 26
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_11_a13/
%G ru
%F MM_2014_26_11_a13
L. A. Yanovich; M. V. Ignatenko. On a class of interpolation polynomials for nonlinear ordinary differential operators. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 90-96. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a13/

[1] Yanovich L. A., Ignatenko M. V., “Operator interpolation formulas based on interpolation polynomials for the scalar functions”, Proc. of the Institute of Mathematics of NAS of Belarus, 11 (2002), 157–167 (in Russian)

[2] Ignatenko M. V., Yanovich L. A., “On operator interpolation formulas of special type with nodes of second multiplicity”, Proc. of NAS of Belarus, Series of Physical-Mathematical Sciences, 4 (1997), 35–41 (in Russian) | MR

[3] Makarov V. L., Khlobystov V. V., Yanovich L. A., “Methods of Operator Interpolation”, Proc. of the Institute of Mathematics of NAS of Ukraine, 83 (2010), 1–517

[4] Ignatenko M. V., Yanovich L. A., “Newton type operator interpolation formulas based on interpolation by means of rational functions”, Comp. Methods in Applied Math., 2:2 (2002), 143–152 | MR | Zbl

[5] Yanovich L. A., Ignatenko M. V., “Interpolation operator Hermite–Birkhoff polynomials in space of smooth functions”, Doklady of NAS Belarus, 53:5 (2009), 15–21 (in Russian) | MR | Zbl

[6] Yanovich L. A., Romanovski J. V., “On matrix function interpolation”, J. of Numerical and Applied Mathematics, 97:1 (2009), 122–131

[7] Yanovich L. A., Romanovski J. V., “Interpolation formulas for functions of many matrix variables”, Proc. of NAS of Ukraine, 7:1 (2010), 365–379 (in Russian) | Zbl

[8] Yanovich L. A., Ignatenko M. V., “Operator interpolation Hermite–Birkhoff formulas in spaces of smooth functions”, J. of Numerical and Applied Mathematics, 100:1 (2010), 117–129

[9] Ignatenko M. V., Yanovich L. A., “Generalized interpolation formulas for operators defined on Cartesian product of functional spaces”, Proc. of NAS of Belarus, Series of Physical-Mathematical Sciences, 1 (2011), 5–11 (in Russian) | MR

[10] Yanovich L. A., Hudyakov A. P., “On one class of interpolating formulas for functions of matrix variable”, J. of Numerical and Applied Mathematics, 105:2 (2011), 136–147