Smooth approximation of functions of two variables
Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 78-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

An inductive algorithm is presented for smooth approximation of functions based on the Tikhonov regularization, applied for specific kind of the Tikhonov parametric functional. The discrepancy principle is used for estimation of the regularization parameter. The principle of heuristic self-organization is applied for assessment of optimal values of some parameters.
@article{MM_2014_26_11_a11,
     author = {T. Kupenova},
     title = {Smooth approximation of functions of two variables},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {78--82},
     publisher = {mathdoc},
     volume = {26},
     number = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a11/}
}
TY  - JOUR
AU  - T. Kupenova
TI  - Smooth approximation of functions of two variables
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 78
EP  - 82
VL  - 26
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_11_a11/
LA  - en
ID  - MM_2014_26_11_a11
ER  - 
%0 Journal Article
%A T. Kupenova
%T Smooth approximation of functions of two variables
%J Matematičeskoe modelirovanie
%D 2014
%P 78-82
%V 26
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_11_a11/
%G en
%F MM_2014_26_11_a11
T. Kupenova. Smooth approximation of functions of two variables. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 78-82. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a11/

[1] Talmi A., Gilat G., “Method for smooth approximation of data”, Journal of Computational Physics, 23 (1977), 93–123 | DOI | MR | Zbl

[2] Ivakhnenko A. G., “Heuristic Self-Organization in Problems of Engineering Cybernetics”, Automatica, 1970, no. 6

[3] Beer S., Cybernetics and Management, The English Universities Press LTD, London, 1967