Smooth approximation of functions of two variables
Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 78-82
Cet article a éte moissonné depuis la source Math-Net.Ru
An inductive algorithm is presented for smooth approximation of functions based on the Tikhonov regularization, applied for specific kind of the Tikhonov parametric functional. The discrepancy principle is used for estimation of the regularization parameter. The principle of heuristic self-organization is applied for assessment of optimal values of some parameters.
@article{MM_2014_26_11_a11,
author = {T. Kupenova},
title = {Smooth approximation of functions of two variables},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {78--82},
year = {2014},
volume = {26},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a11/}
}
T. Kupenova. Smooth approximation of functions of two variables. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 78-82. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a11/
[1] Talmi A., Gilat G., “Method for smooth approximation of data”, Journal of Computational Physics, 23 (1977), 93–123 | DOI | MR | Zbl
[2] Ivakhnenko A. G., “Heuristic Self-Organization in Problems of Engineering Cybernetics”, Automatica, 1970, no. 6
[3] Beer S., Cybernetics and Management, The English Universities Press LTD, London, 1967