Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_10_a9, author = {A. N. Kudinov and D. Y. Lebedev and V. P. Tsvetkov and I. V. Tsvetkov}, title = {Mathematical model of multi-fractal dynamics and analysis of heart rate}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {127--136}, publisher = {mathdoc}, volume = {26}, number = {10}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_10_a9/} }
TY - JOUR AU - A. N. Kudinov AU - D. Y. Lebedev AU - V. P. Tsvetkov AU - I. V. Tsvetkov TI - Mathematical model of multi-fractal dynamics and analysis of heart rate JO - Matematičeskoe modelirovanie PY - 2014 SP - 127 EP - 136 VL - 26 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2014_26_10_a9/ LA - ru ID - MM_2014_26_10_a9 ER -
%0 Journal Article %A A. N. Kudinov %A D. Y. Lebedev %A V. P. Tsvetkov %A I. V. Tsvetkov %T Mathematical model of multi-fractal dynamics and analysis of heart rate %J Matematičeskoe modelirovanie %D 2014 %P 127-136 %V 26 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2014_26_10_a9/ %G ru %F MM_2014_26_10_a9
A. N. Kudinov; D. Y. Lebedev; V. P. Tsvetkov; I. V. Tsvetkov. Mathematical model of multi-fractal dynamics and analysis of heart rate. Matematičeskoe modelirovanie, Tome 26 (2014) no. 10, pp. 127-136. http://geodesic.mathdoc.fr/item/MM_2014_26_10_a9/
[1] Griffin B., Topol E., Kardiologiya. Praktika, 2011, 1248 pp.
[2] Kudinov A. N., Tsvetkov V. P., Tsvetkov I. V., “Catastrophes in the Multi-Fractal Dynamics of Social-Economic Systems”, Russian Journal of Mathematical Physics, 18:2 (2011), 149–155 | DOI | MR | Zbl
[3] Mandelbrot B. B., “Fructals”, Encyclopedia of Physical Science and Technology, v. 5, 1987, 579–593
[4] Feder E., Fraktaly, Mir, M., 1991, 259 pp.
[5] Mandelbrot B. B., The Fractal Geometry of Nature, Freeman, San Francisco, 1982 | MR | Zbl
[6] D. Shumakov (red.), Kardiologiya v ezhednevnoi praktike, Izd-vo Eksmo, 2009, 560 pp.
[7] Kudinov A. N., Tsvetkov V. P., Tsvetkov I. V., “Valyutnyi krizis i bifurkatsionnye yavleniya v ramkakh fraktalnoi modeli”, Finansy i kredit, 2009, no. 38(326), 55–59 ; Цветков И. В., “Математическая модель кризисных экономических процессов, описываемых мультифрактальными временными кривыми”, Вестник Тверского государственного университета. Серия: Прикладная математика, 2010, No 17, 127–132
[8] Kudinov A. N. i dr., Opredelenie fraktalnoi razmernosti vremennogo ryada, Svidetelstvo o registratsii programmy dlya EVM No 2012661074. Zaregistrirovano v reestre programm dlya EVM 6.12.2012
[9] Kudinov A. N. i dr., Raschet parametrov trendovoi struktury, Svidetelstvo o registratsii programmy dlya EVM No 2012661075. Zaregistrirovano v reestre programm dlya EVM 6.12.2012
[10] Kudinov A. N. i dr., Normirovka pervichnoi fraktalnoi razmernosti vremennogo ryada, Svidetelstvo o registratsii programmy dlya EVM No 2012661073. Zaregistrirovano v reestre programm dlya EVM 6.12.2012
[11] Kudinov A. N. i dr., Proverka pervogo kriteriya sootvetstviya, Svidetelstvo o registratsii programmy dlya EVM No 2012661071. Zaregistrirovano v reestre programm dlya EVM 6.12.2012
[12] Kudinov A. N. i dr., Proverka vtorogo kriteriya sootvetstviya, Svidetelstvo o registratsii programmy dlya EVM No 2012661072. Zaregistrirovano v reestre programm dlya EVM 6.12.2012