Numerical research of evolution of the shock wave in gas-particles suspension with account uneven distribution of particles
Matematičeskoe modelirovanie, Tome 26 (2014) no. 10, pp. 109-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

In work research of process of evolution of a shock wave in a gas-particles suspension which dynamics is modeled by continual system of the equations of movement of two-temperatures and two-speed monodisperse two phases environment in a two-dimensional case. The carrier environment is described by system of the equations of Navier–Stokes. The disperse phase is modeled by the equations of preservation of weight, an impulse and internal energy. The system is given to a dimensionless look and integrated by McCormack obvious method with the conservative scheme of the correction applied to each of phases to obtaining the monotonous decision. The received decisions are compared with known results from literature.
Mots-clés : gas-particles suspension
Keywords: disintegration of discontinuities, Navier–Stokes equations, McCormack obvious scheme.
@article{MM_2014_26_10_a7,
     author = {D. A. Gubaidullin and D. A. Tukmakov},
     title = {Numerical research of evolution of the shock wave in gas-particles suspension with account uneven distribution of particles},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--119},
     publisher = {mathdoc},
     volume = {26},
     number = {10},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_10_a7/}
}
TY  - JOUR
AU  - D. A. Gubaidullin
AU  - D. A. Tukmakov
TI  - Numerical research of evolution of the shock wave in gas-particles suspension with account uneven distribution of particles
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 109
EP  - 119
VL  - 26
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_10_a7/
LA  - ru
ID  - MM_2014_26_10_a7
ER  - 
%0 Journal Article
%A D. A. Gubaidullin
%A D. A. Tukmakov
%T Numerical research of evolution of the shock wave in gas-particles suspension with account uneven distribution of particles
%J Matematičeskoe modelirovanie
%D 2014
%P 109-119
%V 26
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_10_a7/
%G ru
%F MM_2014_26_10_a7
D. A. Gubaidullin; D. A. Tukmakov. Numerical research of evolution of the shock wave in gas-particles suspension with account uneven distribution of particles. Matematičeskoe modelirovanie, Tome 26 (2014) no. 10, pp. 109-119. http://geodesic.mathdoc.fr/item/MM_2014_26_10_a7/

[1] Nigmatulin R. I., Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987, 464 pp.

[2] Osiptsov A. N., “Razvitie lagranzhevogo podkhoda dlya modelirovaniya dispersnykh sred”, Problemy sovremennoi mekhaniki, Sbornik. K 85-letiyu so dnya rozhdeniya akademika G. G. Chernogo, Izd-vo MGU, M., 2008, 390–407

[3] Kutushev A. G., Matematicheskoe modelirovanie volnovykh protsessov v aerodispersnykh i poroshkoobraznykh sredakh, Nedra, Sankt-Peterburg, 2003, 284 pp.

[4] Sedov L. I., Mekhanika sploshnoi sredy, v. 1, 2, Nauka, M., 1984

[5] Kisilev S. G., Ruev G. A., Trunev A. P., Fomin V. F., Shavaliev M. Sh., Udarno-volnovye protsessy v dvukhkomponentnykh i dvukhfaznykh sredakh, Nauka, Novosibirsk, 1992, 261 pp. | MR

[6] Tukmakov A. L., “Chislennoe modelirovanie kolebanii monodispersnoi gazovzvesi v nelineinom volnovom pole”, PMTF, 52:2 (2011), 36–43 | MR | Zbl

[7] Fletcher C. A., Computation Techniques for Fluid Dynamics, Springer-Verlang, Berlin et al., 1988 | Zbl

[8] Muzafarov I. F., Utyuzhnikov S. V., “Primenenie kompaktnykh raznostnykh skhem k issledovaniyu nestatsionarnykh techenii szhimaemogo gaza”, Matematicheskoe modelirovanie, 5:3 (1993), 74–83 | MR | Zbl