Parallel implicit scheme implementation LU-SGS method for 3D turbulent flows
Matematičeskoe modelirovanie, Tome 26 (2014) no. 10, pp. 64-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we present efficient parallel solver for 3D Reynolds averaged Navie–Stocks equations with Edwards modification of Spalart-Allmaras turbulence model. The solver is based on fully implicit finite volume WENO-type scheme, which solved by LU-SGS. Numerical experiments are demonstrated efficiency and scalability of the proposed algorithm and its implementation.
Keywords: parallel LU-SGS method, WENO, ONERA M6, SA turbulence model.
Mots-clés : RANS
@article{MM_2014_26_10_a4,
     author = {V. E. Borisov and A. A. Davydov and I. Yu. Kudryashov and A. E. Lutsky and I. S. Men'shov},
     title = {Parallel implicit scheme implementation {LU-SGS} method for {3D} turbulent flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {64--78},
     publisher = {mathdoc},
     volume = {26},
     number = {10},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_10_a4/}
}
TY  - JOUR
AU  - V. E. Borisov
AU  - A. A. Davydov
AU  - I. Yu. Kudryashov
AU  - A. E. Lutsky
AU  - I. S. Men'shov
TI  - Parallel implicit scheme implementation LU-SGS method for 3D turbulent flows
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 64
EP  - 78
VL  - 26
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_10_a4/
LA  - ru
ID  - MM_2014_26_10_a4
ER  - 
%0 Journal Article
%A V. E. Borisov
%A A. A. Davydov
%A I. Yu. Kudryashov
%A A. E. Lutsky
%A I. S. Men'shov
%T Parallel implicit scheme implementation LU-SGS method for 3D turbulent flows
%J Matematičeskoe modelirovanie
%D 2014
%P 64-78
%V 26
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_10_a4/
%G ru
%F MM_2014_26_10_a4
V. E. Borisov; A. A. Davydov; I. Yu. Kudryashov; A. E. Lutsky; I. S. Men'shov. Parallel implicit scheme implementation LU-SGS method for 3D turbulent flows. Matematičeskoe modelirovanie, Tome 26 (2014) no. 10, pp. 64-78. http://geodesic.mathdoc.fr/item/MM_2014_26_10_a4/

[1] Takanori Haga, Keisuke Sawada, Z. J. Wang, “An Implicit LU-SGS Scheme for the Spectral Volume Method on Unstructured Tetrahedral Grids”, Commun. Comput. Phys., 6:5 (2009), 978–996 | DOI | MR

[2] S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, PETSc 2.0 users manual, Technical Report ANL-95/11-Revision 2.0.24, Argonne National Laboratory, Apr. 1999

[3] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, H. Zhang, PETSc Web page, , 2001 http://www.mcs.anl.gov/petsc

[4] S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, “Efficiency management of parallelism in object oriented numerical software libraries”, Modern Software Tools in Scientific Computing, eds. E. Arge, A. Bruaset, H. P. Langtangen, Birkhauser Press, 1997, 163–202 | DOI | Zbl

[5] P. Rasetarinera, M. Y. Hussaini, “An efficient implicit discontinuous Galerkin method”, J. Comput. Phys., 172:2 (2001), 718–738 | DOI | Zbl

[6] H. Luo, D. Sharov, J. D. Baum, R. Lohner, Parallel unstructured grid GMRES+LU-SGS method for turbulent flows, American Institute of Aeronautics and Astronautics, 2003

[7] S. Yoon, A. Jameson, “Lower-upper symmetric-Gauss–Seidel method for the Euler and Navier–Stokes equations”, AIAA Journal, 26 (1988), 1025–1026 | DOI

[8] X. D. Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, Journal of Computational Physics, 115 (1994), 200–212 | DOI | MR | Zbl

[9] C. W. Shu, “High order weighted essentially non-oscillatory schemes for convection dominated problems”, SIAM Review, 51 (2009), 82–112 | DOI | MR

[10] C. Hu, C. W. Shu, “Weighted essentially non-oscillatory schemes on triangular meshes”, J. Comput. Phys., 150 (1999), 97–127 | DOI | MR | Zbl

[11] C. W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, ed. A. Quarteroni, Springer-Verlag, Berlin–New York, 1998, 325 | DOI | MR | Zbl

[12] P. R. Spalart, S. R. Allmaras, A One-equations Turbulence Model for Aerodynamics Flows, AIAA Paper 92-0439, 1992

[13] J. R. Edwards, S. Chandra, “Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields”, AIAA Journal, 34:4 (1996), 756–763 | DOI

[14] S. R. Allmaras, F. T. Johnson, P. R. Spalart, “Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model”, Senenth International Conferecnce on CFD (ICCFD7) (Big Island, Hawaii, 9–13 July 2012)

[15] Dong Li, Igor Men'shov, Yoshiaki Nakamura, “Detached-Eddy Simulation of Three Airfoils with Different Stall Onset Mechanisms”, Journal of Aircraft, 43:4 (2006), 0021-8669, 1014–1021 | DOI

[16] R. F. Chen, Z. J. Wang, “Fast block lower-upper symmetric Gauss Seidel scheme for arbitrary grids”, AIAA J., 38:12 (2000), 2238–2245 | DOI

[17] A. Jameson, D. A. Caughey, “How many steps are required to solve the Euler equations of steady compressible flow: in search of a fast solution algorithm”, 15th AIAA computational fluid dynamics conference (Anaheim, CA, June 2001)

[18] Y. Sun, Z. J. Wang, Y. Liu, C. L. Chen, Efficient implicit LU-SGS algorithm for high-order spectral difference method on unstructured hexahedral grids, AIAA Paper No 2007-0313, 2007

[19] P. V. Pavlukhin, I. S. Menshov, “Effektivnaya realizatsiya metoda LU-SGS dlya zadach gazovoi dinamiki”, Nauchnyi vestnik MGTU GA, 165 (2011), 46–55

[20] V. Schmitt, F. Charpin, Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers, Experimental Data Base for Computer Program Assessment, Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138, May 1979

[21] Sylvain Gaultier, ONERA research lab, http://www.onera.fr/en/actualites/image-du-mois/onera-m6-wing-star-cfd

[22] A. Jameson, Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, AIAA paper No 91-1596, 1991, 15 pp.

[23] C. Hirsh, Numerical computation of internal and external flows, v. 1, Wiley/Interscience, New York, 1991

[24] V. V. Rusanov, “Raschet nestatsionarnykh udarnykh voln s prepyatstviyami”, ZhVM i MF, 1:2 (1961), 267–279 | MR

[25] I. Men'shov, Y. Nakamura, “On implicit Godunov's method with exactly linearized numerical flux”, Computers and Fluids, 29 (2000), 595–616 | DOI | Zbl

[26] I. Men'shov, Y. Nakamura, “An implicit advection upwind splitting scheme for hypersonic air flows in thermochemical nonequilibrium”, Collection of technical papers of 6th Int. Symp. on CFD (Lake Tahoe, Nevada, 1995), v. 2, 815–821

[27] E. Cuthill, J. McKee, “Reducing the Bandwidth of Sparse Symmetrical Matrices”, Proc. ACM Nat. Conf., New York, 1969, 157–172

[28] Intel $^\circledR$ Compilers, http://software.intel.com/ru-ru/intel-compilers

[29] http://www.kiam.ru/MVS/resourses/k100.html