Couette flow and heat transfer between parallel plates in a rarefied gas
Matematičeskoe modelirovanie, Tome 26 (2014) no. 10, pp. 33-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The efficiency of the method of self-similar interpolation in its simplest demonstrated on the solution of the problem of plane Couette with different temperature plates in the rarefied gas. The analytic solution of the problem is compared with the results, obtained by the direct statistical simulation. The most interesting result is non-monotonous heat flux and changes its sign when you change the sparsity of gas — Knudsen number $\mathrm{Kn}$.
Mots-clés : Couette flow, direct simulation Monte-Carlo.
Keywords: self-similar interpolation
@article{MM_2014_26_10_a2,
     author = {S. L. Gorelov and Vuong Van Tien},
     title = {Couette flow and heat transfer between parallel plates in a rarefied gas},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--46},
     publisher = {mathdoc},
     volume = {26},
     number = {10},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_10_a2/}
}
TY  - JOUR
AU  - S. L. Gorelov
AU  - Vuong Van Tien
TI  - Couette flow and heat transfer between parallel plates in a rarefied gas
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 33
EP  - 46
VL  - 26
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_10_a2/
LA  - ru
ID  - MM_2014_26_10_a2
ER  - 
%0 Journal Article
%A S. L. Gorelov
%A Vuong Van Tien
%T Couette flow and heat transfer between parallel plates in a rarefied gas
%J Matematičeskoe modelirovanie
%D 2014
%P 33-46
%V 26
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_10_a2/
%G ru
%F MM_2014_26_10_a2
S. L. Gorelov; Vuong Van Tien. Couette flow and heat transfer between parallel plates in a rarefied gas. Matematičeskoe modelirovanie, Tome 26 (2014) no. 10, pp. 33-46. http://geodesic.mathdoc.fr/item/MM_2014_26_10_a2/

[1] Gluzman S., Yukalov V. I., “Unified approach to crossover phenomena”, Physical review, 58:4 (1998) | MR

[2] Gorelov S. L., “Primenenie metoda samopodobnoi interpolyatsii k zadacham dinamiki razrezhennogo gaza”, PMM, 69:3 (2005), 438–444 | MR

[3] Gorelov S. L., “Self-similar interpolation in rarefied gas dynamics”, Rarefied Gas Dynamics, Proc. 25th Int. Symp. (St.-Petersburg, 2007), 871–876

[4] Gorelov S. L., Zeiyar So, “Samopodobnaya interpolyatsiya v zadachakh dinamiki razrezhennogo gaza”, Uchenye zapiski TsAGI, 2010, no. 5 | MR

[5] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967

[6] Koshmarov Yu. A., Ryzhov Yu. A., Prikladnaya dinamika razrezhennogo gaza, Mashinostr., M., 1977

[7] Abramov A. A., Butkovskii A. V., “Effekty nemonotonnosti i izmeneniya znaka potoka energii v perekhodnom rezhime v zadache Kuetta s teploperedachei”, MZhG, 2010, no. 1, 167–174 | MR | Zbl

[8] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1974

[9] Bird G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994 | MR

[10] Berd G., Molekulyarnaya gazovaya dinamika, Mir, M., 1981

[11] Gorelov S. L., Rusakov S. V., “Fiziko-khimicheskaya model giperzvukovogo obtekaniya tel razrezhennym gazom”, MZhG, 2002, no. 3, 131–144 | Zbl