Stability of relative equilibrium of rigid body on revolving elastic rod
Matematičeskoe modelirovanie, Tome 26 (2014) no. 10, pp. 19-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mechanical system is considered which consists of rigid body connected to the end of revolving elastic massive rod. The sufficient stability conditions of the relative equilibrium states are obtained as the conditions of the positive definiteness of the second variation of the potential energy functional.
Keywords: elastic rod, potential energy functional, second variation of potential, stability of relative equilibrium states.
@article{MM_2014_26_10_a1,
     author = {V. M. Morozov and A. V. Ilinskaya and Hjao Zhe},
     title = {Stability of relative equilibrium of rigid body on revolving elastic rod},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {26},
     number = {10},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_10_a1/}
}
TY  - JOUR
AU  - V. M. Morozov
AU  - A. V. Ilinskaya
AU  - Hjao Zhe
TI  - Stability of relative equilibrium of rigid body on revolving elastic rod
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 19
EP  - 32
VL  - 26
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_10_a1/
LA  - ru
ID  - MM_2014_26_10_a1
ER  - 
%0 Journal Article
%A V. M. Morozov
%A A. V. Ilinskaya
%A Hjao Zhe
%T Stability of relative equilibrium of rigid body on revolving elastic rod
%J Matematičeskoe modelirovanie
%D 2014
%P 19-32
%V 26
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_10_a1/
%G ru
%F MM_2014_26_10_a1
V. M. Morozov; A. V. Ilinskaya; Hjao Zhe. Stability of relative equilibrium of rigid body on revolving elastic rod. Matematičeskoe modelirovanie, Tome 26 (2014) no. 10, pp. 19-32. http://geodesic.mathdoc.fr/item/MM_2014_26_10_a1/

[1] Chalomei V. N. (red.), Vibratsii v tekhnike, Spravochnik, v. 3, Mashinostroenie, M., 1981

[2] Bitsenko K. B., Grammel R., Tekhnicheskaya dinamika, v. II, Gostekhizdat, M.–L., 1952, 630 pp.

[3] Nikolai E. L., K teorii gibkogo vala. Trudy po mekhanike, Gostekhizdat, M.–L., 1955, 419–435

[4] Filippov A. P., Kolebaniya deformiruemykh sistem, Mashinostroenie, M., 1970, 736 pp.

[5] Den-Gargot Dzh. P., Mekhanicheskie kolebaniya, Fizmatgiz, M., 1960, 580 pp.

[6] Magnus K., Giroskop. Teoriya i primenenie, Mir, M., 1974, 526 pp.

[7] Akulenko L. D., Mikhailov S. A., Chernousko F. L., “Modelirovanie dinamiki manipulyatora s uprugimi zvenyami”, Mekhanika tverdogo tela, 1981, no. 3, 118–124

[8] Akulenko L. D., Bolotnik N. N., “Ob upravlyaemom vraschenii uprugogo sterzhnya”, Prikladnaya matematika i mekhanika, 46:4 (1982), 587–595 | MR

[9] Kane T. R., Ryan R. R., Banerjee A. K., “Dynamics of a Cantilever Beam Attached to a Moving Base”, J. of Guidance, Control and Dynamics, 10:2 (1987), 139–151 | DOI | MR

[10] Kulla P., “Dynamics of Spinning Bodies Containing Elastic Rods”, J. Spacecraft and Rockets, 9:4 (1972), 246–253 | DOI

[11] Patter S., Manor H., “Natural Frequencies of Radial Rotatin Beams”, J. of Sound and Vibration, 56:2 (1978), 175–185 | DOI

[12] Modi V. J., “Attitude Dynamics of Satellite with Flexible Appendages — A Brief Review”, Journal of Spacecraft and Rockets, 11 (1974), 743–751 | DOI

[13] Likins P. W., Barbera F. J., Baddelly V., “Mathematical Modelling of Spinning Elastic Bodies for modal Analysis”, AIAA Journal, 11:9 (1973), 1251–1258 | DOI

[14] Meirovitch L., Calico R., “The stability of motion of force-free spinning satellites with flexible appendages”, J. Spacecraft and Rockets, 9:4 (1972), 237–245 | DOI

[15] Hughes P. C., Fung J. C., “Lapunov stability of spinning satellites with long flefible appendages”, Celest. Mech., 4:3–4 (1971), 295–308 | DOI | Zbl

[16] Morozov V. M., Rubanovskii V. N., “Nekotorye zadachi ob ustoichivosti statsionarnykh dvizhenii tverdogo tela s deformiruemymi elementami”, Nauchn. trudy In-ta mekh. Mosk. un-ta, 1, M., 1973, 109–161

[17] Chzhao Tsze, Ustoichivost statsionarnykh dvizhenii mekhanicheskikh sistem, soderzhaschikh deformiruemye elementy, Dis. ... kand. fiz.-matem. nauk, Inst. mekh., M., 2008

[18] Dokuchaev L. V., “Nelineinaya dinamika uprugogo letatelnogo apparata”, Itogi nauki i tekhniki. VINITI. Ser. «Obschaya mekhanika», 5, 1982, 135–197

[19] Rubanovskii V. N., “Ustoichivost ustanovivshikhsya dvizhenii slozhnykh mekhanicheskikh sistem”, Itogi nauki i tekhniki. VINITI. Ser. «Obschaya mekhanika», 5, 1982, 62–134 | MR | Zbl

[20] Lure A. I., Analiticheskaya mekhanika, Fizmatgiz, M., 1961, 824 pp.

[21] Lyapunov A. M., “Ob ustoichivosti ellipsoidalnykh form ravnovesiya vraschayuscheisya zhidkosti”, Sobr. soch., v. 3, Izdatelstvo AN SSSR, M., 1959, 5–113

[22] Lyapunov A. M., “Zadacha minimuma v odnom voprose ob ustoichivosti figur ravnovesiya vraschayuscheisya zhidkosti”, Sobr. soch., v. 3, Izdatelstvo AN SSSR, M., 1959, 237–360

[23] Rumyantsev V. V., “Ob ustoichivosti ustanovivshikhsya dvizhenii tverdykh tel s polostyami, napolnennymi zhidkostyu”, Prikl. mekh., 26:6 (1962), 977–991 | Zbl

[24] Rumyantsev V. V., “O dvizhenii i ustoichivosti uprugogo tela s polostyu, soderzhaschei zhidkost”, Prikl. mat. i mekh., 33:6 (1969), 946–957 | Zbl

[25] Morozov V. M., Rubanovskii V. N., Rumyantsev V. V., Samsonov V. A., “O bifurkatsii i ustoichivosti ustanovivshikhsya dvizhenii slozhnykh mekhanicheskikh sistem”, Prikl. mat. i mekh., 37:3 (1973), 387–399 | Zbl

[26] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970, 512 pp. | MR | Zbl