Quasi one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustics problems
Matematičeskoe modelirovanie, Tome 25 (2013) no. 9, pp. 95-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents a cell-centered variant of the quasi one-dimensional reconstruction scheme for solving hyperbolic systems on unstructured polygonal meshes. Approximation properties of the linear scheme for smooth solutions on a mesh consisting of coinciding cells are studied. Also shown are the results of computational experiments for the linearized Euler equations on various meshes.
Keywords: high-accurancy schemes, unstructured meshes.
@article{MM_2013_25_9_a8,
     author = {P. A. Bakhvalov},
     title = {Quasi one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustics problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--108},
     publisher = {mathdoc},
     volume = {25},
     number = {9},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_9_a8/}
}
TY  - JOUR
AU  - P. A. Bakhvalov
TI  - Quasi one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustics problems
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 95
EP  - 108
VL  - 25
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_9_a8/
LA  - ru
ID  - MM_2013_25_9_a8
ER  - 
%0 Journal Article
%A P. A. Bakhvalov
%T Quasi one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustics problems
%J Matematičeskoe modelirovanie
%D 2013
%P 95-108
%V 25
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_9_a8/
%G ru
%F MM_2013_25_9_a8
P. A. Bakhvalov. Quasi one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustics problems. Matematičeskoe modelirovanie, Tome 25 (2013) no. 9, pp. 95-108. http://geodesic.mathdoc.fr/item/MM_2013_25_9_a8/

[1] Cockburn B., Karniadakis G. E., Shu C.-W. (eds.), Discontinuous Galerkin Methods. Theory, Computation and Applications, Springer, 2000 | MR

[2] Li B. Q., Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer, Springer, 2006 | MR

[3] Abalakin I. V., Kozubskaya T. K., “Skhema povyshennoi tochnosti na osnove reberno-orientirovannoi kvaziodnomernoi rekonstruktsii peremennykh dlya resheniya zadach aerodinamiki i aeroakustiki na tetraedralnykh setkakh”, Matemat. modelir., 25:8 (2013), 109–136

[4] Koobus B., Alauzet F., Dervieux A., “Numerical algorithms for unstructured meshes”, Computational Fluid Dynamics, ed. F. Magoules, CRC Press, 2011, 131–203 | DOI | Zbl

[5] Shu C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservations laws, ICASE report No 97-65, 1997 | MR

[6] Huang L. C., “Pseudo-unsteady Difference Schemes for Discontinuous Solution of Steady-State. One-Dimensional Fluid Dynamics Problems”, J. Comp. Phys., 42 (1981), 195–211 | DOI | MR | Zbl