Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2013_25_9_a8, author = {P. A. Bakhvalov}, title = {Quasi one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustics problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {95--108}, publisher = {mathdoc}, volume = {25}, number = {9}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2013_25_9_a8/} }
TY - JOUR AU - P. A. Bakhvalov TI - Quasi one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustics problems JO - Matematičeskoe modelirovanie PY - 2013 SP - 95 EP - 108 VL - 25 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2013_25_9_a8/ LA - ru ID - MM_2013_25_9_a8 ER -
P. A. Bakhvalov. Quasi one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustics problems. Matematičeskoe modelirovanie, Tome 25 (2013) no. 9, pp. 95-108. http://geodesic.mathdoc.fr/item/MM_2013_25_9_a8/
[1] Cockburn B., Karniadakis G. E., Shu C.-W. (eds.), Discontinuous Galerkin Methods. Theory, Computation and Applications, Springer, 2000 | MR
[2] Li B. Q., Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer, Springer, 2006 | MR
[3] Abalakin I. V., Kozubskaya T. K., “Skhema povyshennoi tochnosti na osnove reberno-orientirovannoi kvaziodnomernoi rekonstruktsii peremennykh dlya resheniya zadach aerodinamiki i aeroakustiki na tetraedralnykh setkakh”, Matemat. modelir., 25:8 (2013), 109–136
[4] Koobus B., Alauzet F., Dervieux A., “Numerical algorithms for unstructured meshes”, Computational Fluid Dynamics, ed. F. Magoules, CRC Press, 2011, 131–203 | DOI | Zbl
[5] Shu C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservations laws, ICASE report No 97-65, 1997 | MR
[6] Huang L. C., “Pseudo-unsteady Difference Schemes for Discontinuous Solution of Steady-State. One-Dimensional Fluid Dynamics Problems”, J. Comp. Phys., 42 (1981), 195–211 | DOI | MR | Zbl