Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2013_25_9_a5, author = {O. A. Kovyrkina and V. V. Ostapenko}, title = {On the practical accuracy of shock-capturing schemes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {63--74}, publisher = {mathdoc}, volume = {25}, number = {9}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2013_25_9_a5/} }
O. A. Kovyrkina; V. V. Ostapenko. On the practical accuracy of shock-capturing schemes. Matematičeskoe modelirovanie, Tome 25 (2013) no. 9, pp. 63-74. http://geodesic.mathdoc.fr/item/MM_2013_25_9_a5/
[1] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR
[2] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR
[3] Kolgan V. P., “Primenenie operatorov sglazhivaniya v raznostnykh skhemakh vysokogo poryadka tochnosti”, Zh. vychisl. matem. i matem. fiz., 18:5 (1978), 1340–1345 | MR | Zbl
[4] Boris J. P., Book D. L., Hain K., “Flux-corrected transport. II: Generalizations of the method”, J. Comput. Phys., 18:3 (1975), 248–283 | DOI | MR | Zbl
[5] Van Leer B., “Toward the ultimate conservative difference scheme. V: A second-order sequel to Godunov's method”, J. Comp. Phys., 32:1 (1979), 101–136 | DOI | MR
[6] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[7] Kurganov A., Tadmor E., “New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations”, J. Comp. Phys., 160 (2000), 214–282 | MR
[8] Pinchukov V. I., Shu Ch.-V., Chislennye metody vysokikh poryadkov dlya zadach aerogidrodinamiki, Izd-vo SO RAN, Novosibirsk, 2000
[9] Ostapenko V. V., “O skhodimosti raznostnykh skhem za frontom nestatsionarnoi udarnoi volny”, Zh. vychisl. matem. i matem. fiz., 37:10 (1997), 1201–1212 | MR | Zbl
[10] Casper J., Carpenter M. H., “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19:1 (1998), 813–828 | DOI | MR | Zbl
[11] Engquist B., Sjogreen B., “The convergence rate of finite difference schemes in the presence of shocks”, SIAM J. Numer. Anal., 35 (1998), 2464–2485 | DOI | MR | Zbl
[12] Kovyrkina O. A., Ostapenko V. V., “O skhodimosti raznostnykh skhem skvoznogo scheta”, Doklady Akademii nauk, 433:5 (2010), 599–603 | MR | Zbl
[13] MacCormack R. W., The effect of viscosity in hypervelosity impact cratering, AIAA paper, No 69-354, 1969
[14] Rusanov V. V., “Raznostnye skhemy tretego poryadka tochnosti dlya skvoznogo scheta razryvnykh reshenii”, Dokl. AN SSSR, 180:6 (1968), 1303–1305 | MR | Zbl
[15] Lax P., Wendroff B., “Systems of conservation laws”, Commun. Pure Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl
[16] Ostapenko V. V., “O konechno-raznostnoi approksimatsii uslovii Gyugonio na fronte udarnoi volny, rasprostranyayuscheisya s peremennoi skorostyu”, ZhVMiMF, 38:8 (1998), 1355–1367 | MR | Zbl