Shock wave reflection from the axis of symmetry in a nonuniform flow with the formation of a circulatory flow zone
Matematičeskoe modelirovanie, Tome 25 (2013) no. 8, pp. 33-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two supersonic axisymmetric flows, in which the incidence of a shock wave on the axis of symmetry leads to the formation of return (circulatory) flow zones, are numerically modeled. The first flow is of the wake type with a ram pressure deficit in the vicinity of the axis of symmetry. The numerical results obtained are in qualitative and quantitative agreement with the available experimental data. The second flow is generated by a hypersonic spherically-symmetric source placed on the axis of a cylindrical channel. An analysis of the solutions obtained, together with their comparison with the literature data, suggests that the formation of the above-mentioned circulatory flow zones is physical, rather than computational, in nature. There is also reason to believe that the phenomenon under consideration is hydrodynamic, rather than dissipative, in nature.
Keywords: gas dynamics, shock wave reflection from an axis of symmetry, circulatory zones, method of adaptive artificial viscosity, Godunov method.
@article{MM_2013_25_8_a2,
     author = {O. B. Bocharova and M. G. Lebedev and I. V. Popov and V. V. Sitnik and I. V. Fryazinov},
     title = {Shock wave reflection from the axis of symmetry in a nonuniform flow with the formation of a circulatory flow zone},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--50},
     publisher = {mathdoc},
     volume = {25},
     number = {8},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_8_a2/}
}
TY  - JOUR
AU  - O. B. Bocharova
AU  - M. G. Lebedev
AU  - I. V. Popov
AU  - V. V. Sitnik
AU  - I. V. Fryazinov
TI  - Shock wave reflection from the axis of symmetry in a nonuniform flow with the formation of a circulatory flow zone
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 33
EP  - 50
VL  - 25
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_8_a2/
LA  - ru
ID  - MM_2013_25_8_a2
ER  - 
%0 Journal Article
%A O. B. Bocharova
%A M. G. Lebedev
%A I. V. Popov
%A V. V. Sitnik
%A I. V. Fryazinov
%T Shock wave reflection from the axis of symmetry in a nonuniform flow with the formation of a circulatory flow zone
%J Matematičeskoe modelirovanie
%D 2013
%P 33-50
%V 25
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_8_a2/
%G ru
%F MM_2013_25_8_a2
O. B. Bocharova; M. G. Lebedev; I. V. Popov; V. V. Sitnik; I. V. Fryazinov. Shock wave reflection from the axis of symmetry in a nonuniform flow with the formation of a circulatory flow zone. Matematičeskoe modelirovanie, Tome 25 (2013) no. 8, pp. 33-50. http://geodesic.mathdoc.fr/item/MM_2013_25_8_a2/

[1] A. I. Rylov, “K voprosu o nevozmozhnosti regulyarnogo otrazheniya statsionarnoi udarnoi volny ot osi simmetrii”, Prikladnaya matematiki i mekhanika, 54:2 (1990), 245–249 | MR | Zbl

[2] S. Molder, A. Gulamhussein, E. V. Timofeev, P. A. Voinovich, “Focusing of conical shocks at the center-line of symmetry”, 21$^{\mathrm{st}}$ International Symposium on Shock Waves (Univ. of Queensland, Queensland, Australia, 1997), 5601

[3] B. J. Gribben, K. J. Badcock, B. E. Richards, “Numerical study of shock-reflection hysteresis in an underexpanded jet”, AIAA Journal, 38:2 (2000), 275–283 | DOI

[4] G. Winterfeld, “On the burning limits of flame-holder-stabilized flames in supersonic flows”, IUTAM Symposium on combustion in supersonic flows, Kluwer, Dordrecht, 1967, 15–42

[5] G. F. Glotov, “Lokalnye dozvukovye zony v sverkhzvukovykh struinykh techeniyakh”, Izvestiya RAN. Mekhanika zhidkosti i gaza, 1998, no. 1, 143–150

[6] N. V. Guryleva, E. I. Sokolov, N. B. Fedosenko, “Issledovanie statsionarnykh tsirkulyatsionnykh zon v nedorasshirennykh sverkhzvukovykh struyakh, istekayuschikh v zatoplennoe prostranstvo i sputnyi sverkhzvukovoi potok”, Modeli i metody aerodinamiki, Materialy Vosmoi mezhdunarodnoi shkoly-seminara (Evpatoriya, 4–16 iyunya 2008), MNTsMO, M., 2008, 45–46

[7] L. F. F. da Silva, V. Sabel'nikov, B. Deshaies, “Stabilization of supersonic combustion by a free recirculating bubble: a numerical study”, AIIA Journal, 35:11 (1997), 1782–1784 | DOI | Zbl

[8] V. V. Zatoloka, A. K. Ivanyushkin, A. V. Nikolaev, “Interferentsiya vikhrei so skachkami uplotneniya v vozdukhozabornike. Razrushenie vikhrei”, Uchen. zap. TsAGI, 6:2 (1975), 134–138

[9] O. Metwally, G. Settles, An experimental study of shock wave/vortex interaction, AIAA Paper No 0082, 1989, 12 pp.

[10] A. Nedungadi, M. J. Lewis, “Computational study of the flowfields associated with oblique shock/vortex interactions”, AIAA Journal, 34:12 (1996), 2545–2553 | DOI

[11] M. Frey, Behandlung von Strömungsproblem in Racketendüsen bei Überexpansion, Dr.-Ing. Diss., Inst. für Aerodynamik und Gasdynamik, Univ. Stuttgart, 2001 http://elib.uni-stuttgart.de/opus/volltexte/2001/800/pdf/diss_frey.pdf

[12] V. A. Goryainov, A. Yu. Molchanov, “Naraschivanie prostranstvennoi setki v zadachakh termo-gazodinamiki pri fiksirovannykh vychislitelnykh resursakh”, Mat. modelirovanie, 13:8 (2001), 3–8 | Zbl

[13] V. A. Goryainov, “O vozmozhnosti reversa techeniya v svobodnykh sverkhzvukovykh struyakh”, Mat. modelirovanie, 15:7 (2003), 86–92 | Zbl

[14] O. B. Bocharova, M. G. Lebedev, A. V. Savin, E. I. Sokolov, “Statsionarnye tsirkulyatsionnye zony v sverkhzvukovykh neravnomernykh potokakh”, XXI Nauchno-tekhnicheskaya konferentsiya po aerodinamike, Tezisy dokladov, Izd. TsAGI, M., 2010, 35–36

[15] P. S. Batchikov, O. B. Bocharova, M. G. Lebedev, “Techenie v oblasti khvostovogo vzaimodeistviya sfericheski-simmetrichnogo i ravnomernogo potokov gaza”, Prikladnaya matematika i informatika, 36, MAKS-Press, M., 2010, 5–26

[16] K. I. Babenko, V. V. Rusanov, “Raznostnye metody resheniya prostranstvennykh zadach gazovoi dinamiki”, Trudy II Vsesoyuznogo s'ezda po mekhanike, Obzornye doklady, v. 2, Nauka, M., 1965, 247–262

[17] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR | Zbl

[18] I. V. Popov, I. V. Fryazinov, “Adaptivnaya iskusstvennaya vyazkost dlya mnogomernoi gazovoi dinamiki v eilerovykh peremennykh v dekartovykh koordinatakh”, Mat. modelirovanie, 22:1 (2010), 32–45 | MR | Zbl

[19] I. V. Popov, I. V. Fryazinov, “Raschety dvumernykh testovykh zadach metodom adaptivnoi iskusstvennoi vyazkosti”, Mat. modelirovanie, 22:5 (2010), 57–66 | MR | Zbl

[20] I. V. Popov, I. V. Fryazinov, “Metod adaptivnoi iskusstvennoi vyazkosti dlya uravnenii gazovoi dinamiki na treugolnykh i tetraedralnykh setkakh”, Mat. modelirovanie, 24:6 (2012), 109–127 | MR | Zbl

[21] C. K. W. Tam, “Directional acoustic radiation from a supersonic jet generated by shear layer instability”, J. Fluid Mech., 46:4 (1971), 757–769 | DOI

[22] R. Zauer, Vvedenie v gazovuyu dinamiku, Gostekhizdat, M., 1947, 228 pp.

[23] M. G. Lebedev, K. G. Savinov, “K raschetu techenii nevyazkogo gaza odnim konechno-raznostnym metodom”, Matematicheskie modeli i metody, Izd-vo MGU, M., 1987, 228–246