Numerical simulation of the hydrodynamic instability evolution during passing of compression wave through two gases interface
Matematičeskoe modelirovanie, Tome 25 (2013) no. 8, pp. 22-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The physical-mathematical model of the hydrodynamic instability evolution is performed for the case when compression wave passes through interface layer of two gases. Satisfactory agreement between experimental results and results of 2D calculation is shown. The future possibilities of the model development and its application for experiments planning are also discussed.
Keywords: computer modeling, hydrodynamic instability, comparison with experiments.
@article{MM_2013_25_8_a1,
     author = {O. Dmitriev and V. Krivets and I. Lebo and A. Simakov and S. Titov and E. Chebotareva},
     title = {Numerical simulation of the hydrodynamic instability evolution during passing of compression wave through two gases interface},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {22--32},
     publisher = {mathdoc},
     volume = {25},
     number = {8},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_8_a1/}
}
TY  - JOUR
AU  - O. Dmitriev
AU  - V. Krivets
AU  - I. Lebo
AU  - A. Simakov
AU  - S. Titov
AU  - E. Chebotareva
TI  - Numerical simulation of the hydrodynamic instability evolution during passing of compression wave through two gases interface
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 22
EP  - 32
VL  - 25
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_8_a1/
LA  - ru
ID  - MM_2013_25_8_a1
ER  - 
%0 Journal Article
%A O. Dmitriev
%A V. Krivets
%A I. Lebo
%A A. Simakov
%A S. Titov
%A E. Chebotareva
%T Numerical simulation of the hydrodynamic instability evolution during passing of compression wave through two gases interface
%J Matematičeskoe modelirovanie
%D 2013
%P 22-32
%V 25
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_8_a1/
%G ru
%F MM_2013_25_8_a1
O. Dmitriev; V. Krivets; I. Lebo; A. Simakov; S. Titov; E. Chebotareva. Numerical simulation of the hydrodynamic instability evolution during passing of compression wave through two gases interface. Matematičeskoe modelirovanie, Tome 25 (2013) no. 8, pp. 22-32. http://geodesic.mathdoc.fr/item/MM_2013_25_8_a1/

[1] Taylor G., “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes”, Proceedings of Royal Society, ser. A, 201 (1950), 192 | DOI | MR | Zbl

[2] Richtmyer R. D., “Taylor instability in a shock acceleration of compressible fluids”, Comm. Pure and Appl. Math., 12:2 (1960), 297 | DOI | MR

[3] Meshkov E. E., “Neustoichivost granitsy razdela dvukh gazov, uskoryaemykh udarnoi volnoi”, Izvestiya akademii nauk SSSR. Mekhanika zhidkosti i gaza, 5 (1969), 151

[4] Aleshin A. N., Lazareva E. V., Zaitsev S. G., Rozanov V. B., Gamalii E. G., Lebo I. G., “Issledovanie lineinoi, nelineinoi i perekhodnoi stadii razvitiya neustoichivosti Rikhtmaiera–Meshkova”, Doklady akademii nauk SSSR, 310:5 (1990), 1105–1108

[5] Lebo I. G., Rozanov V. B., Tishkin V. F., Nikishin V. V., Popov I. V., Favorsky A. P., “Numerical simulation of Richtmyer–Meshkov instability”, Proceedings of 20$^{\mathrm{th}}$ International Symposium on Shock Waves (Pasadena, USA, July 1995), v. 1, 605–610 | MR

[6] Lebo I. G., Nikishin V. V., Rozanov V. B., Tishkin V. F., “Numerical simulation and evalution of multimode initial perturbations in the development of Richtmayer–Meshkov instabilities”, Journal of Russian Laser Research, 19:5 (1998), 483–504

[7] Gamalii E. G., Zaitsev S. G., Lebo I. G., Rozanov V. B., Titov S. I., Chebotareva E. I., “Vzaimodeistvie udarnoi volny s oblastyu kontakta raznoplotnykh gazov”, Teplofizika vysokikh temperatur, 25:5 (1988), 960–964

[8] Zaitsev S. G., Lebo I. G., Rozanov V. B., Titov S. I., Chebotareva E. I., “Gidrodinamicheskaya neustoichivost oblasti kontakta gazovykh sred, dvizhuschikhsya uskorenno”, Izvestiya akademii nauk SSSR. Mekhanika zhidkosti i gaza, 1991, 15–21

[9] Zaytsev S. G., Krivets V. V., Mazilin I. M., Titov S. N., Chebotareva E. I., Nikishin V. V., Tishkin V. F., Bouquet S., Haas J.-F., “Evolution of the Rayleigh–Taylor Instability in the Mixing Zone Between Gases of Different Densities in a Field of Variable Acceleration”, Laser and Particle Beams, 2003, no. 21, 393–402

[10] Nikishin V. V., Popov I. V., Tishkin V. F., Favorskii A. P., “Raznostnye skhemy trekhmernoi gazovoi dinamiki dlya zadachi o razvitii neustoichivosti Rikhtmaiera–Meshkova”, Matematicheskoe modelirovanie, 7:5 (1995), 15–25

[11] Lebo I. G., Tishkin V. F., Issledovanie gidrodinamicheskoi neustoichivosti v zadachakh lazernogo termoyadernogo sinteza, Fizmatlit, M., 2006, 304 pp.

[12] Samarskii A. A., Popov Yu. P., Raznostnye skhemy gazovoi dinamiki, Nauka, M., 1975, 352 pp. | MR

[13] Salamandra G. D., Fotograficheskie metody issledovaniya bystroprotekayuschikh protsessov, Nauka, M., 1974, 201 pp.

[14] Dmitriev O. A., Lebo I. G., “Modelirovanie eksperimentov po prokhozhdeniyu volny szhatiya cherez kontaktnuyu granitsu dvukh gazov”, 60 NTK MGTU MIREA, Sb. tr., v. 2, MIREA, M., 2011, 96

[15] Garina S. M., Zmitrenko N. V., Ladonkina M. E., Lebo I. G., Nikishin V. V., Proncheva N. G., Rozanov V. B., Tishkin V. F., “Chislennoe modelirovanie i analiz kharakteristik turbulentnogo peremeshivaniya s pomoschyu trekhmernogo koda NUT”, Matematicheskoe modelirovanie, 15 (2003), 3–11 | Zbl

[16] Ladonkina M. E., Chislennoe modelirovanie turbulentnogo peremeshivaniya s ispolzovaniem vysokoproizvoditelnykh sistem, Dissertatsiya ... kand. fiz.-mat. nauk, IMM RAN, M., 2005