Traffic modeling: monotonic total-connected random walk on a network
Matematičeskoe modelirovanie, Tome 25 (2013) no. 8, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Monotonic (particles move in the same direction) and total-connected (particles that occupy neighboring cells move synchronized) random ($p1$) and deterministic ($p=1$) walks on closed networks, which consist of circles, are considered. An algorithm has been developed that allows to calculate the duration of the time interval after that all the particles will be contained in the unique cluster. It is proved that such the interval is finite in the considered model. Some statements are proved that allow to found the velocity of movement if deterministic movement occurs on the follows structures: two rings (two closed sequences of cells) that have a common cell; a closed sequence of rings each of that has two common cells with two the neighboring rings; a two-dimensional network structure in that each cell has common cells with four the neighboring rings; a similar infinite network.
Keywords: stochastic models; random walk; traffic flows.
@article{MM_2013_25_8_a0,
     author = {A. S. Bugaev and A. P. Buslaev and V. V. Kozlov and A. G. Tatashev and M. V. Yashina},
     title = {Traffic modeling: monotonic total-connected random walk on a network},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {25},
     number = {8},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_8_a0/}
}
TY  - JOUR
AU  - A. S. Bugaev
AU  - A. P. Buslaev
AU  - V. V. Kozlov
AU  - A. G. Tatashev
AU  - M. V. Yashina
TI  - Traffic modeling: monotonic total-connected random walk on a network
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 3
EP  - 21
VL  - 25
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_8_a0/
LA  - ru
ID  - MM_2013_25_8_a0
ER  - 
%0 Journal Article
%A A. S. Bugaev
%A A. P. Buslaev
%A V. V. Kozlov
%A A. G. Tatashev
%A M. V. Yashina
%T Traffic modeling: monotonic total-connected random walk on a network
%J Matematičeskoe modelirovanie
%D 2013
%P 3-21
%V 25
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_8_a0/
%G ru
%F MM_2013_25_8_a0
A. S. Bugaev; A. P. Buslaev; V. V. Kozlov; A. G. Tatashev; M. V. Yashina. Traffic modeling: monotonic total-connected random walk on a network. Matematičeskoe modelirovanie, Tome 25 (2013) no. 8, pp. 3-21. http://geodesic.mathdoc.fr/item/MM_2013_25_8_a0/

[1] Kozlov V. V., Buslaev A. P., “Metropolis traffic modeling: from intelligent monitoring through physical representation to mathematical problems”, Proceed. of International Conference on Computational and Mathematical Methods in Science and Engineering (Spain, 2012), v. 2, 750–756

[2] Nagel K., Schreckenberg M., “A cellular automaton model for freeway traffic”, J. Phys. I (France), 2 (1992), 1221–1229 | DOI

[3] Schreckenberg M., Schadschneider A., Nagel K., Ito N., “Discrete stochastic models for traffic flow”, Phys. Rev. E, 51 (1995), 2939–2949 | DOI

[4] Belyaev Yu. K., Tsele U., “Ob uproschennoi modeli dvizheniya bez obgona”, Izv. AN SSSR. Seriya “Tekhn. kibernet.”, 1969, no. 3, 17–21 | Zbl

[5] Blank M. L., “Tochnyi analiz dinamicheskikh sistem, voznikayuschikh v modelirovanii transportnykh potokov”, Uspekhi matematicheskikh nauk, 55:3(333) (2000), 167–168 | DOI | MR | Zbl

[6] Blank M., “Dynamics of traffic jams: order and chaos”, Mosc. Math. J., 1:1 (2001), 1–26 | MR | Zbl

[7] Blank M. L., “Sinkhronno obnovlyaemye protsessy s zapretami v modelyakh avtotransportnykh potokov”, Trudy MFTI, 2:4 (2010), 22–30 | MR

[8] Buslaev A. P., Prikhodko V. M., Tatashev A. G., Yashina M. V., The deterministic-stochastic flow model, 2005, 21 pp., arXiv: physics/0504139v1[physics/soc.-ph]

[9] Buslaev A. P., Novikov A. V., Prikhodko V. M., Tatashev A. G., Yashina M. V., Veroyatnostnye i imitatsionnye podkhody k optimizatsii avtodorozhnogo dvizheniya, Mir, M., 2003

[10] Inose H., Hamada T., Road Traffic Control, University of Tokio Press, 1975 | Zbl

[11] Bugaev A. S., Buslaev A. P., Kozlov V. V., Yashina M. V., “Distributed problems of monitoring and modern approaches to traffic modeling”, International Conference (Waschington, USA, 2011), 2011, 477–481

[12] Buslaev A. P., Gasnikov A. V., Yashina M. V., “Selected mathematical problems of traffic flow theory”, International Journal of Computer Mathematics, 89:3 (2012), 409–432 | DOI | MR | Zbl

[13] Buslaev A. P., Tatashev A. G., “Particles flow on the regular polygon”, Journal of Concrete and Applicable Mathematics (JCAAM), 9:4 (2011), 290–303 | MR | Zbl

[14] Buslaev A. P., Tatashev A. G., “Monotonic random walk on a one-dimensional lattice”, Journal of Concrete and Applicable Mathematics (JCAAM), 10:1–2 (2012), 130–139 | MR | Zbl

[15] Buslaev A. P., Tatashev A. G., “On exact values of monotonic random walks characteristics on lattices”, AMAT 2012, International Conference on Applied Mathematics and Approximation Theory, Abstracts (Ankara, 2012) | MR

[16] Bugaev A. S., Buslaev A. P., Tatashev A. G., Yashina M. V., “Optimizatsiya intensivnosti chastichno-svyaznykh potokov v determinirovanno-stokhasticheskoi modeli”, Trudy MFTI, 2:4 (2010), 15–26

[17] Bugaev A. S., Buslaev A. P., Tatashev A. G., “Monotonnoe sluchainoe bluzhdanie chastits po tselochislennoi polose i LYuMen problema”, Mat. modelirovanie, 18:12 (2006), 19–34 | MR | Zbl

[18] Bugaev A. S., Buslaev A. P., Tatashev A. G., “O modelirovanii segregatsii dvukhpolosnogo potoka chastits”, Mat. modelirovanie, 20:9 (2008), 111–119 | MR | Zbl

[19] Buslaev A., Tatashev A., Yaroshenko A., “Traffic and monotone random walk of particles: analytical and simulation results”, SIMUL 2011, The Third International Conference on Advances in System Simulation (October 23–29, 2011, Barcelona, Spain), Think Mind http://www.thinkmind.org/index.php?view=article&articleid=simul_2011_3_20_50018

[20] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Per. s angl., Mir, M., 1964, 499 pp. | Zbl

[21] Spitser F., Printsipy sluchainogo bluzhdaniya, Per. s angl., Mir, M., 1969, 472 pp.