On the coefficients of the Euler–Macloren formulae for numerical integration
Matematičeskoe modelirovanie, Tome 25 (2013) no. 6, pp. 72-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recurrent formulas were derived for Euler–MacLoren coefficients of numerical integration. Asymptotical properties of these coefficients were found. First 10 coefficients were given in terms of rational fractions.
Keywords: numerical integration, Euler–MacLoren coefficients of high order.
@article{MM_2013_25_6_a6,
     author = {A. A. Belov},
     title = {On the coefficients of the {Euler{\textendash}Macloren} formulae for numerical integration},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {72--79},
     year = {2013},
     volume = {25},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_6_a6/}
}
TY  - JOUR
AU  - A. A. Belov
TI  - On the coefficients of the Euler–Macloren formulae for numerical integration
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 72
EP  - 79
VL  - 25
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_6_a6/
LA  - ru
ID  - MM_2013_25_6_a6
ER  - 
%0 Journal Article
%A A. A. Belov
%T On the coefficients of the Euler–Macloren formulae for numerical integration
%J Matematičeskoe modelirovanie
%D 2013
%P 72-79
%V 25
%N 6
%U http://geodesic.mathdoc.fr/item/MM_2013_25_6_a6/
%G ru
%F MM_2013_25_6_a6
A. A. Belov. On the coefficients of the Euler–Macloren formulae for numerical integration. Matematičeskoe modelirovanie, Tome 25 (2013) no. 6, pp. 72-79. http://geodesic.mathdoc.fr/item/MM_2013_25_6_a6/

[1] Bakhvalov N. S., Chislennye metody, v. 1, Nauka, M., 1973, 636 pp. | MR | Zbl

[2] Kalitkin H. H., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[3] Kalitkin N. N., “Kvadratury Eilera–Maklorena vysokikh poryadkov”, Matematicheskoe modelirovanie, 16:10 (2004), 64–66 | Zbl