Modeling simultaneous distribution of legal and counterfeit copies of innovative goods
Matematičeskoe modelirovanie, Tome 25 (2013) no. 6, pp. 54-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic mathematical model for the dynamics of number of legal and counterfeit customers of computer games and other innovative products is presented. The model is based on the information propagation and information warfare models. The analysis is conducted using the theory of ordinary differential equations. It is shown that results are in qualitative agreement with empirical data by StarForce.
Keywords: mathematical modeling, information warfare, dissemination of innovative goods, ordinary differential equations.
@article{MM_2013_25_6_a4,
     author = {A. P. Mikhailov and A. P. Petrov and M. I. Kalinichenko and S. V. Polyakov},
     title = {Modeling simultaneous distribution of legal and counterfeit copies of innovative goods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {54--63},
     publisher = {mathdoc},
     volume = {25},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_6_a4/}
}
TY  - JOUR
AU  - A. P. Mikhailov
AU  - A. P. Petrov
AU  - M. I. Kalinichenko
AU  - S. V. Polyakov
TI  - Modeling simultaneous distribution of legal and counterfeit copies of innovative goods
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 54
EP  - 63
VL  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_6_a4/
LA  - ru
ID  - MM_2013_25_6_a4
ER  - 
%0 Journal Article
%A A. P. Mikhailov
%A A. P. Petrov
%A M. I. Kalinichenko
%A S. V. Polyakov
%T Modeling simultaneous distribution of legal and counterfeit copies of innovative goods
%J Matematičeskoe modelirovanie
%D 2013
%P 54-63
%V 25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_6_a4/
%G ru
%F MM_2013_25_6_a4
A. P. Mikhailov; A. P. Petrov; M. I. Kalinichenko; S. V. Polyakov. Modeling simultaneous distribution of legal and counterfeit copies of innovative goods. Matematičeskoe modelirovanie, Tome 25 (2013) no. 6, pp. 54-63. http://geodesic.mathdoc.fr/item/MM_2013_25_6_a4/

[1] Samarskii A. A., Mikhailov A. P., Matematicheskoe modelirovanie, Fizmatlit, M., 2006, 320 pp. | MR

[2] Mikhailov A. P., Klyusov N. V., “O svoistvakh prosteishei matematicheskoi modeli rasprostraneniya informatsionnoi ugrozy”, Matematicheskoe modelirovanie sotsialnykh protsessov, 4, MAKS Press, M., 2002, 115–123

[3] Marevtseva N. A., “Prosteishie matematicheskie modeli informatsionnogo protivoborstva”, Matematicheskoe modelirovanie sotsialnykh protsessov, 11, MAKS Press, M., 2010, 59–72

[4] Marevtseva N. A., “Nekotorye matematicheskie modeli informatsionnogo napadeniya i informatsionnogo protivoborstva”, Sotsiologiya, 2011, no. 3, 26–35

[5] Mikhailov A. P., Izmodenova K. V., “Ob optimalnom upravlenii protsessom rasprostraneniya informatsii”, Matematicheskoe modelirovanie, 17:5 (2005), 67–76 | MR

[6] Mikhailov A. P., Izmodenova K. V., “Ob optimalnom upravlenii v matematicheskoi modeli rasprostraneniya informatsii”, Trudy seminara, Matematicheskoe modelirovanie sotsialnykh protsessov, 6, MAKS Press, M., 2004

[7] Marevtseva N. A., “Prosteishie matematicheskie modeli informatsionnogo protivoborstva”, Sbornik trudov Vserossiiskikh nauchnykh molodezhnykh shkol, Matematicheskoe modelirovanie i sovremennye informatsionnye tekhnologii, 8, izdatelstvo Yuzhnogo federalnogo universiteta, Rostov-na-Donu, 2009, 354–363

[8] Mikhailov A. P., Marevtseva N. A., “Modeli informatsionnoi borby”, Matematicheskoe modelirovanie, 23:10 (2011), 19–32 | Zbl

[9] Bass F. M., “A new product growth for model consumer durables”, Management Science, 15 (1969), 215–227 | DOI | Zbl

[10] Delitsyn L. L., Kolichestvennye modeli rasprostraneniya novovvedenii v sfere informatsionnykh i telekommunikatsionnykh tekhnologii, MGUKI, M., 2009, 106 pp.

[11] Tikhonov A. N., “O zavisimosti reshenii differentsialnykh uravnenii ot malogo parametra”, Matem. sb. Nov. ser., 22:2 (1948), 193–204 | Zbl

[12] Tikhonov A. N., “Sistemy differentsialnykh uravnenii, soderzhaschie malye parametry pri proizvodnykh”, Matem. sb. Nov. ser., 31(73):3 (1952), 147–156 | MR