The software package for the solution of the equations of hyperbolic type
Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 123-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

The software package of TURBO1 for the decision of hyperbolic systems of the differential equations on multiprocessing computing systems with the distributed memory is described. The package represents focused on standards and expanded software product. Within one formalism it is possible to solve some tasks describing different physical processes. For their decision the package provides to the user various numerical techniques and the program blocks containing specific to task entry, boundary conditions and mass forces. Possibilities of this package are shown on an example of numerical modeling of classical tasks of gas dynamics — Releya–Taylor's (RTN) instability and a task about a shear.
Keywords: mathematical modeling, hyperbolic systems of the equations, software package, shear layer problem.
Mots-clés : RTI
@article{MM_2013_25_5_a9,
     author = {S. V. Fortova and L. M. Kraginskii and A. V. Chikitkin and E. I. Oparina},
     title = {The software package for the solution of the equations of hyperbolic type},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {123--135},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_5_a9/}
}
TY  - JOUR
AU  - S. V. Fortova
AU  - L. M. Kraginskii
AU  - A. V. Chikitkin
AU  - E. I. Oparina
TI  - The software package for the solution of the equations of hyperbolic type
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 123
EP  - 135
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_5_a9/
LA  - ru
ID  - MM_2013_25_5_a9
ER  - 
%0 Journal Article
%A S. V. Fortova
%A L. M. Kraginskii
%A A. V. Chikitkin
%A E. I. Oparina
%T The software package for the solution of the equations of hyperbolic type
%J Matematičeskoe modelirovanie
%D 2013
%P 123-135
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_5_a9/
%G ru
%F MM_2013_25_5_a9
S. V. Fortova; L. M. Kraginskii; A. V. Chikitkin; E. I. Oparina. The software package for the solution of the equations of hyperbolic type. Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 123-135. http://geodesic.mathdoc.fr/item/MM_2013_25_5_a9/

[1] Belotserkovskii O. M., Oparin A. M., Chechetkin V. M., Turbulentnost: novye podkhody, Nauka, M., 2002

[2] T. E. Faber, Gidroaerodinamika, Postmarket, M., 2001

[3] Paket CLAWPACK, http://www.amath.washington.edu/r̃jl/clawpack.html

[4] Paket Flux Coupler, http://www.cgd.ucar.edu/csm/models/cpl/

[5] L. M. Kraginskiy, Universal Technology of Parallel Computations for the Problems. Described by Systems of the Equations of Hyperbolic Type and its Applications, PhD thesis, Moscow, 2003, 143 pp.

[6] A. M. Oparin, “Chislennoe modelirovanie problem, svyazannykh s intensivnym razvitiem gidrodinamicheskikh neustoichivostei”, Novoe v chisl. modelirovanii: algoritmy, vychisl. eksperimenty, rezultaty, Nauka, M., 2000, 63–90 | MR

[7] O. M. Belotserkovskii, S. V. Fortova, “Issledovanie spektralnykh kharakteristik odnorodnogo turbulentnogo potoka”, ZhVMiMF, 52:2 (2012), 1–8 | MR

[8] S. V. Fortova, “Investigation of spectrum characteristics of the vortex cascades in shear flow”, Topical Issue of the Physica Scripta, 2012, PSTOP/366247/SPE/256146 | Zbl

[9] O. M. Belotserkovskii, S. V. Fortova, “Investigation of the Cascade Mechanism of Turbulence Development in Free Shear Flow”, Doklady Akademii Nauk, 443:1 (2012), 44–47

[10] O. M. Belotserkovskii, S. V. Fortova, “Makroparametry prostranstvennykh techenii v svobodnoi sdvigovoi turbulentnosti”, ZhVM i MF, 50:6 (2010), 1–14 | MR

[11] B. P. Zeigler, Object-Oriented Simulation with Hierarchical, Modular Models, Academic Press, New York, 1990 | Zbl

[12] L. D. Landau, E. M. Lifshits, Mekhanika sploshnykh sred, Gostekhteorizdat, M., 1953

[13] L. G. Loitsyanskii, Mekhanika zhidkosti i gaza, Nauka, M., 1978 | MR

[14] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981 | MR | Zbl

[15] P. L. Roe, “Approximate Riemann solvers, parameter vectors and difference scheme”, J. Comp. Phys., 43 (1981), 357–372 | DOI | MR | Zbl

[16] K. M. Magometov, A. S. Kholodov, Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1987 | MR

[17] P. L. Roe, “Characteristic-based schemes for the Euler equations”, Ann. Rev. Fluid Mechanics, 8 (1986), 337–365 | DOI | MR

[18] Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:2 (1983), 357–393 | DOI | MR | Zbl

[19] J. Y. Yang, “Third-order nonoscillatory schemes for the Euler Equations”, AIAA Journal, 29:10 (1991), 1611–1618 | DOI | Zbl

[20] van Leer B., “Towards the ultimate conservative difference scheme. V: A second-order sequel to Godunov's method”, Journal of Computational Physics, 32 (1979), 101–136 | DOI

[21] Belotserkovskii O. M., Davydov Yu. M., Metod krupnykh chastits v gazovoi dinamike, Nauka, M., 1982

[22] Fletcher K., Vychislitelnye metody v dinamike zhidkostei, Mir, M., 1991, 552 pp. | MR

[23] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidrodinamiki”, Mat. sb., 47:3 (1959), 271–306 | MR | Zbl

[24] R. Courant, E. Isaacon, M. Rees, “On the solution of nonlinear hyperbolic differential equations by finite differences”, Comm. Pure and Applied Mathematics, 5 (1952), 243–255 | DOI | MR | Zbl

[25] O. M. Belotserkovskii, V. A. Guschin, V. N. Konshin, “Metod rasschepleniya dlya issledovaniya techenii stratifitsirovannoi zhidkosti so svobodnoi poverkhnostyu”, Zh. vychisl. matem. i matem. fiz., 27:4 (1987), 594–609 | MR

[26] Kharlou F. Kh., “Chislennyi metod chastits v yacheikakh dlya zadach gidrodinamiki”, Vychisl. metody v gidrodinamike, Mir, M., 1967

[27] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete Reference, MIT Press, 1996

[28] Buch G., Ob'ektno-orientirovannoe proektirovanie s primerami primeneniya, per. s angl., Konkord, M., 1992

[29] O. M. Belotserkovskii, Yu. M. Davydov, A. Yu. Demyanov, “Vzaimodeistvie mod vozmuschenii pri neustoichivosti Releya–Teilora”, Dokl. AN SSSR, 288 (1986), 1071

[30] A. N. Kolmogorov, “Lokalnaya struktura turbulentnosti v neszhimaemoi vyazkoi zhidkosti pri ochen bolshikh chislakh Reinoldsa”, DAN SSSR, 30:4, 299–303

[31] A. M. Obukhov, “O raspredelenii energii v spektre turbulentnogo potoka”, Izv. AN SSSR. Ser. geogr. i geof., 5:4 (1941), 453–466

[32] K. Aki, P. Richards, Kolichestvennaya seismologiya, Mir, M., 1982