On gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat
Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 109-122

Voir la notice de l'article provenant de la source Math-Net.Ru

The conditions for the stability or instability of relative equilibriums of an axially symmetric gyrostat with a constant inner moment vector on a circular orbit are obtained. Parametric analysis was carried out for the determining conditions of gyroscopic stabilizations of the unstable equilibriums of gyrostat. Investigations were fulfilled by Mathematica LinModel package and Mathematica built-in tools for symbolic-numerical modelling.
Keywords: tationary gyrostat, central newtonean field of forces, stability of positions of equilibrium, degree of instability, gyroscopic stabilization, system of inequalities, computer algebra.
@article{MM_2013_25_5_a8,
     author = {S. V. Chaikin and A. V. Banshchikov},
     title = {On gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--122},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_5_a8/}
}
TY  - JOUR
AU  - S. V. Chaikin
AU  - A. V. Banshchikov
TI  - On gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 109
EP  - 122
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_5_a8/
LA  - ru
ID  - MM_2013_25_5_a8
ER  - 
%0 Journal Article
%A S. V. Chaikin
%A A. V. Banshchikov
%T On gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat
%J Matematičeskoe modelirovanie
%D 2013
%P 109-122
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_5_a8/
%G ru
%F MM_2013_25_5_a8
S. V. Chaikin; A. V. Banshchikov. On gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat. Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 109-122. http://geodesic.mathdoc.fr/item/MM_2013_25_5_a8/