On gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat
Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 109-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conditions for the stability or instability of relative equilibriums of an axially symmetric gyrostat with a constant inner moment vector on a circular orbit are obtained. Parametric analysis was carried out for the determining conditions of gyroscopic stabilizations of the unstable equilibriums of gyrostat. Investigations were fulfilled by Mathematica LinModel package and Mathematica built-in tools for symbolic-numerical modelling.
Keywords: tationary gyrostat, central newtonean field of forces, stability of positions of equilibrium, degree of instability, gyroscopic stabilization, system of inequalities, computer algebra.
@article{MM_2013_25_5_a8,
     author = {S. V. Chaikin and A. V. Banshchikov},
     title = {On gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--122},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_5_a8/}
}
TY  - JOUR
AU  - S. V. Chaikin
AU  - A. V. Banshchikov
TI  - On gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 109
EP  - 122
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_5_a8/
LA  - ru
ID  - MM_2013_25_5_a8
ER  - 
%0 Journal Article
%A S. V. Chaikin
%A A. V. Banshchikov
%T On gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat
%J Matematičeskoe modelirovanie
%D 2013
%P 109-122
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_5_a8/
%G ru
%F MM_2013_25_5_a8
S. V. Chaikin; A. V. Banshchikov. On gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat. Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 109-122. http://geodesic.mathdoc.fr/item/MM_2013_25_5_a8/

[1] Beletskii V. V., Dvizhenie iskusstvennogo sputnika otnositelno tsentra mass, Nauka, M., 1965, 416 pp.

[2] Sarychev V. A., “Voprosy orientatsii iskusstvennykh sputnikov”, Itogi nauki i tekhniki. Issledovanie kosmicheskogo prostranstva, 11, VINITI AN SSSR, M., 1978, 223 pp.

[3] Longman R. W., “Gravity-Gradient stabilization of gyrostat satellites with rotor axes in principal planes”, Celestial Mech., 1971, no. 3, 169–188 | DOI | Zbl

[4] Stepanov S. Ya., Analiticheskoe i chislennoe issledovanie ustoichivosti statsionarnykh dvizhenii, Diss. ... d-ra fiz.-mat. nauk, MGU, M., 2001, 219 pp.

[5] Sarychev V. A., Mirer S. A., Degtyarev A. A., “Dinamika sputnika-girostata s vektorom girostaticheskogo momenta v glavnoi ploskosti inertsii”, Kosmicheskie issledovaniya, 46:1 (2008), 61–73

[6] Rubanovskii V. N., “Ob otnositelnykh ravnovesiyakh sputnika-girostata, ikh vetvlenii i ustoichivosti”, Prikladnaya matematika i mekhanika, 52:6 (1988), 909–914 | MR

[7] Chetaev N. G., Ustoichivost dvizheniya. Raboty po analiticheskoi mekhanike, Izd-vo AN SSSR, M., 1962, 535 pp. | MR

[8] Longman R., Hagedorn P., Beck A., “Stabilization due to gyroscopic coupling in dual-spin satellites subjected to gravitational torques”, Celestial Mech., 1981, no. 5, 353–373 | DOI | MR | Zbl

[9] Anchev A. A., Atanasov V. A., “Analiz neobkhodimykh i dostatochnykh uslovii ustoichivosti ravnovesii sputnika-girostata”, Kosmicheskie issledovaniya, 28:6 (1990), 831–836

[10] Grosheva M. V., Efimov G. B., Samsonov V. A., Istoriya ispolzovaniya analiticheskikh vychislenii v zadachakh mekhaniki, Izd. TsPI pri mekhaniko-matematicheskom fakultete MGU im. M. V. Lomonosova, M., 2005, 87 pp.

[11] Banschikov A. V., “Issledovanie ustoichivosti giroramy sredstvami kompyuternoi algebry”, Matematicheskoe modelirovanie, 8:4 (1996), 67–78

[12] Banschikov A. V., “Analiz dinamiki mekhanicheskikh sistem bolshoi razmernosti sredstvami kompyuternoi algebry”, Sibirskii zhurnal industrialnoi matematiki, XII:3(39) (2009), 15–27

[13] Banschikov A. V., Burlakova L. A., Irtegov V. D., Titorenko T. N., Programmnyi kompleks LinModel dlya analiza dinamiki mekhanicheskikh sistem bolshoi razmernosti, Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM No 2008610622, FGU FIPS, 1 fevralya 2008 g.

[14] Chaikin S. V., Banschikov A. V., “Usloviya giroskopicheskoi stabilizatsii odnogo klassa ravnovesii simmetrichnogo girostata na krugovoi orbite”, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, 2011, no. 4 (32), 65–70

[15] Kozlov V. V., “O stabilizatsii neustoichivykh ravnovesii zaryadov silnymi magnitnymi polyami”, Prikladnaya matematika i mekhanika, 61:3 (1997), 390–397 | MR | Zbl