Bicompact scheme for linear inhomogeneous transport equation
Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 55-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalization of bicompact finite-difference schemes, constructed for homogeneous linear transport equation, has been carried out in the case of inhomogeneous transport equation. This equation describes transport of particles or radiation in media. Bicompact scheme is constructed by means of method of lines for initial unknown function and additional unknown mesh function defined as the integral average of decision function over space cells. Comparison of the method calculation results with the conservative-characteristic method results has been done. The last method might be assigned to bicompact schemes too although it is based on the idea of true distribution of coming fluxes over cell edges.
Mots-clés : transport equation, redistribution of fluxes.
Keywords: finite-difference schemes, bicompact schemes, conservative schemes, Runge–Kutta methods
@article{MM_2013_25_5_a4,
     author = {E. N. Aristova and D. F. Baydin and B. V. Rogov},
     title = {Bicompact scheme for linear inhomogeneous transport equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {55--66},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_5_a4/}
}
TY  - JOUR
AU  - E. N. Aristova
AU  - D. F. Baydin
AU  - B. V. Rogov
TI  - Bicompact scheme for linear inhomogeneous transport equation
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 55
EP  - 66
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_5_a4/
LA  - ru
ID  - MM_2013_25_5_a4
ER  - 
%0 Journal Article
%A E. N. Aristova
%A D. F. Baydin
%A B. V. Rogov
%T Bicompact scheme for linear inhomogeneous transport equation
%J Matematičeskoe modelirovanie
%D 2013
%P 55-66
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_5_a4/
%G ru
%F MM_2013_25_5_a4
E. N. Aristova; D. F. Baydin; B. V. Rogov. Bicompact scheme for linear inhomogeneous transport equation. Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 55-66. http://geodesic.mathdoc.fr/item/MM_2013_25_5_a4/

[1] Rogov B. V., Mikhailovskaya M. N., “Bikompaktnye skhemy chetvertogo poryadka approksimatsii dlya giperbolicheskikh uravnenii”, DAN, 430:4 (2010), 470–474 | MR | Zbl

[2] Rogov B. V., Mikhailovskaya M. N., “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, Matematicheskoe modelirovanie, 23:6 (2011), 98–110 | MR | Zbl

[3] Rogov B. V., Mikhailovskaya M. N., “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, DAN, 436:5 (2011), 600–605 | MR | Zbl

[4] Rogov B. V., Mikhailovskaya M. N., “Monotonnaya vysokotochnaya kompaktnaya skhema beguschego scheta dlya kvazilineinykh uravnenii giperbolicheskogo tipa”, DAN, 440:2 (2011), 172–177 | MR | Zbl

[5] Mikhailovskaya M. N., Rogov B. V., “Bikompaktnye monotonnye skhemy dlya mnogomernogo lineinogo uravneniya perenosa”, Matematicheskoe modelirovanie, 23:10 (2011), 107–116 | MR | Zbl

[6] Mikhailovskaya M. N., Rogov B. V., “Monotonnye kompaktnye skhemy beguschego scheta dlya sistem uravnenii giperbolicheskogo tipa”, ZhVM i MF, 52:4 (2012), 672–695 | MR

[7] Aristova E. N., Baidin D. F., Goldin V. Ya., “Dva varianta ekonomichnogo metoda resheniya uravneniya perenosa v $r-z$ geometrii na osnove perekhoda k peremennym Vladimirova”, Matematicheskoe modelirovanie, 18:7 (2006), 43–52 | MR | Zbl

[8] Harten A., “Class of High Resolution Total Variation Stable Finite-Difference Schemes”, SIAM J. Numer. Anal., 21 (1984), 1–23 | DOI | MR | Zbl

[9] Harten A., “ENO schemes with Subcell Resolution”, J. Comp. Phys., 83 (1989), 148–184 | DOI | MR | Zbl

[10] Mathews K. A., “On the propagation of rays in discrete ordinates”, Nucl. Sci. and Eng., 123 (1999), 155–180

[11] Lathrop K. D., “Spatial differencing of the transport equation: Positivity vs. accuracy”, J. Comput. Phys., 4:4 (1969), 475–490 | DOI

[12] Bass L. P., Nikolaeva O. V., “SWDD skhema MDO i rezultaty metodicheskikh raschetov”, dokl. na seminare “Algoritmy i programmy dlya neitronno-fiz. raschetov yadernykh reaktorov”, Neitronika-97 (Obninsk, 25–27 oktyabrya 1997), 76–83 | Zbl

[13] Nikolaeva O. V., “Spetsialnye setochnye approksimatsii dlya uravneniya perenosa v silno geterogennykh sredakh s $x-y$ geometriei”, ZhVM i MF, 44:5 (2004), 883–903 | MR | Zbl

[14] Voloschenko A. M., “O reshenii uravneniya perenosa $\mathrm{DS}_n$ metodom v geterogennykh sredakh. Chast 2: Odnomernye sfericheskaya i tsilindricheskaya geometrii”, Chislennoe reshenie uravnenii perenosa v odnomernykh zadachakh, IPM im. M. V. Keldysha AN SSSR, M., 1981, 64–91

[15] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988, 334 pp. | MR

[16] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[17] Rogov B. V., Mikhailovskaya M. N., “O skhodimosti kompaktnykh raznostnykh skhem”, Matematicheskoe modelirovanie, 20:1 (2008), 99–116 | MR | Zbl

[18] Aristova E. N., Rogov B. V., “O realizatsii granichnykh uslovii v bikompaktnykh skhemakh dlya lineinogo uravneniya perenosa”, Matematicheskoe modelirovanie, 24:10 (2012), 3–14

[19] Goldin V. Ya., Danilova G. V., Kalitkin N. N., “Chislennoe integrirovanie mnogomernogo uravneniya perenosa”, Chislennye metody resheniya zadach matemat. fiziki, M., 1966, 190–193

[20] Goldin V. Ya., Kalitkin N. N., Shishova T. V., “Nelineinye raznostnye skhemy dlya giperbolicheskikh uravnenii”, Zhurn. vychisl. mat. i mat. fiz., 5:5 (1965), 938–944 | MR

[21] Bakirova M. I., Karpov V. Ya., Mukhina M. I., “Kharakteristiko-interpolyatsionnyi metod resheniya uravneniya perenosa”, Differentsialnye uravneniya, 22:7 (1986), 1141–1148 | MR | Zbl

[22] Troschiev V. E., Nifanova A. V., Troschiev Yu. V., “Kharakteristicheskii podkhod k approksimatsii zakonov sokhraneniya v kineticheskikh uravneniyakh perenosa izluchenii”, DAN, 394:4 (2004), 454–458 | MR