Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2013_25_5_a4, author = {E. N. Aristova and D. F. Baydin and B. V. Rogov}, title = {Bicompact scheme for linear inhomogeneous transport equation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {55--66}, publisher = {mathdoc}, volume = {25}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2013_25_5_a4/} }
TY - JOUR AU - E. N. Aristova AU - D. F. Baydin AU - B. V. Rogov TI - Bicompact scheme for linear inhomogeneous transport equation JO - Matematičeskoe modelirovanie PY - 2013 SP - 55 EP - 66 VL - 25 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2013_25_5_a4/ LA - ru ID - MM_2013_25_5_a4 ER -
E. N. Aristova; D. F. Baydin; B. V. Rogov. Bicompact scheme for linear inhomogeneous transport equation. Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 55-66. http://geodesic.mathdoc.fr/item/MM_2013_25_5_a4/
[1] Rogov B. V., Mikhailovskaya M. N., “Bikompaktnye skhemy chetvertogo poryadka approksimatsii dlya giperbolicheskikh uravnenii”, DAN, 430:4 (2010), 470–474 | MR | Zbl
[2] Rogov B. V., Mikhailovskaya M. N., “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, Matematicheskoe modelirovanie, 23:6 (2011), 98–110 | MR | Zbl
[3] Rogov B. V., Mikhailovskaya M. N., “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, DAN, 436:5 (2011), 600–605 | MR | Zbl
[4] Rogov B. V., Mikhailovskaya M. N., “Monotonnaya vysokotochnaya kompaktnaya skhema beguschego scheta dlya kvazilineinykh uravnenii giperbolicheskogo tipa”, DAN, 440:2 (2011), 172–177 | MR | Zbl
[5] Mikhailovskaya M. N., Rogov B. V., “Bikompaktnye monotonnye skhemy dlya mnogomernogo lineinogo uravneniya perenosa”, Matematicheskoe modelirovanie, 23:10 (2011), 107–116 | MR | Zbl
[6] Mikhailovskaya M. N., Rogov B. V., “Monotonnye kompaktnye skhemy beguschego scheta dlya sistem uravnenii giperbolicheskogo tipa”, ZhVM i MF, 52:4 (2012), 672–695 | MR
[7] Aristova E. N., Baidin D. F., Goldin V. Ya., “Dva varianta ekonomichnogo metoda resheniya uravneniya perenosa v $r-z$ geometrii na osnove perekhoda k peremennym Vladimirova”, Matematicheskoe modelirovanie, 18:7 (2006), 43–52 | MR | Zbl
[8] Harten A., “Class of High Resolution Total Variation Stable Finite-Difference Schemes”, SIAM J. Numer. Anal., 21 (1984), 1–23 | DOI | MR | Zbl
[9] Harten A., “ENO schemes with Subcell Resolution”, J. Comp. Phys., 83 (1989), 148–184 | DOI | MR | Zbl
[10] Mathews K. A., “On the propagation of rays in discrete ordinates”, Nucl. Sci. and Eng., 123 (1999), 155–180
[11] Lathrop K. D., “Spatial differencing of the transport equation: Positivity vs. accuracy”, J. Comput. Phys., 4:4 (1969), 475–490 | DOI
[12] Bass L. P., Nikolaeva O. V., “SWDD skhema MDO i rezultaty metodicheskikh raschetov”, dokl. na seminare “Algoritmy i programmy dlya neitronno-fiz. raschetov yadernykh reaktorov”, Neitronika-97 (Obninsk, 25–27 oktyabrya 1997), 76–83 | Zbl
[13] Nikolaeva O. V., “Spetsialnye setochnye approksimatsii dlya uravneniya perenosa v silno geterogennykh sredakh s $x-y$ geometriei”, ZhVM i MF, 44:5 (2004), 883–903 | MR | Zbl
[14] Voloschenko A. M., “O reshenii uravneniya perenosa $\mathrm{DS}_n$ metodom v geterogennykh sredakh. Chast 2: Odnomernye sfericheskaya i tsilindricheskaya geometrii”, Chislennoe reshenie uravnenii perenosa v odnomernykh zadachakh, IPM im. M. V. Keldysha AN SSSR, M., 1981, 64–91
[15] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988, 334 pp. | MR
[16] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.
[17] Rogov B. V., Mikhailovskaya M. N., “O skhodimosti kompaktnykh raznostnykh skhem”, Matematicheskoe modelirovanie, 20:1 (2008), 99–116 | MR | Zbl
[18] Aristova E. N., Rogov B. V., “O realizatsii granichnykh uslovii v bikompaktnykh skhemakh dlya lineinogo uravneniya perenosa”, Matematicheskoe modelirovanie, 24:10 (2012), 3–14
[19] Goldin V. Ya., Danilova G. V., Kalitkin N. N., “Chislennoe integrirovanie mnogomernogo uravneniya perenosa”, Chislennye metody resheniya zadach matemat. fiziki, M., 1966, 190–193
[20] Goldin V. Ya., Kalitkin N. N., Shishova T. V., “Nelineinye raznostnye skhemy dlya giperbolicheskikh uravnenii”, Zhurn. vychisl. mat. i mat. fiz., 5:5 (1965), 938–944 | MR
[21] Bakirova M. I., Karpov V. Ya., Mukhina M. I., “Kharakteristiko-interpolyatsionnyi metod resheniya uravneniya perenosa”, Differentsialnye uravneniya, 22:7 (1986), 1141–1148 | MR | Zbl
[22] Troschiev V. E., Nifanova A. V., Troschiev Yu. V., “Kharakteristicheskii podkhod k approksimatsii zakonov sokhraneniya v kineticheskikh uravneniyakh perenosa izluchenii”, DAN, 394:4 (2004), 454–458 | MR