Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2013_25_5_a1, author = {L. M. Skvortsov}, title = {Efficient implementation of second order implicit {Runge--Kutta} methods}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {15--28}, publisher = {mathdoc}, volume = {25}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2013_25_5_a1/} }
L. M. Skvortsov. Efficient implementation of second order implicit Runge--Kutta methods. Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 15-28. http://geodesic.mathdoc.fr/item/MM_2013_25_5_a1/
[1] Gear C. W., Numerical solution of ordinary differential equations: is there anything left to do?, SIAM Review, 23:1 (1981), 10–24 | DOI | MR | Zbl
[2] Curtiss C. F., Hirschfelder J. O., “Integration of stiff equations”, Proc. of the National Academy of Sciences of the USA, 38 (1952), 235–243 | DOI | MR | Zbl
[3] Lebedev V. I., Medovikov A. A., “Yavnyi metod vtorogo poryadka tochnosti dlya resheniya zhestkikh sistem obyknovennykh differentsialnykh uravnenii”, Izv. vuzov. Matematika, 1998, no. 9, 55–63 | MR | Zbl
[4] Skvortsov L. M., “Yavnye adaptivnye metody Runge–Kutty”, Matem. modelirovanie, 23:7 (2011), 73–87 | MR | Zbl
[5] Berzins M., Furzeland R. M., “An adaptive theta method for the solution of stiff and nonstiff differential equations”, Appl. Numer. Math., 9:1 (1992), 1–19 | DOI | MR | Zbl
[6] Cooper C. J., Vignesvaran R., “Some schemes for the implementation of implicit Runge–Kutta methods”, J. Comput. Appl. Math., 45:12 (1993), 213–225 | DOI | MR | Zbl
[7] Hosea M. E., Shampine L. F., “Analysis and implementation of TR-BDF2”, Appl. Numer. Math., 20:1–2 (1996), 21–37 | DOI | MR | Zbl
[8] Gustafsson K., Soderlind G., “Control strategies for the iterative solution of nonlinear equations in ODE solvers”, SIAM J. Sci. Comput., 18:1 (1997), 23–40 | DOI | MR | Zbl
[9] Olsson H., Soderlind G., “The approximate Runge–Kutta computational processes”, BIT, 40:2 (2000), 351–373 | DOI | MR | Zbl
[10] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.
[11] Skvortsov L. M., “Ekonomichnaya skhema realizatsii neyavnykh metodov Runge–Kutty”, Zh. vychisl. matem. i matem. fiz., 48:11 (2008), 2008–2018 | MR
[12] Kulikov G. Yu., Kuznetsov E. B., Khrustaleva E. Yu., “O kontrole globalnoi oshibki v neyavnykh gnezdovykh metodakh Runge–Kutty gaussovskogo tipa”, Sib. zhurn. vychisl. matem., 14:3 (2011), 245–259
[13] Novikov E. A., Shitov Yu. A., Shokin Yu. I., “O klasse $(m, k)$-metodov resheniya zhestkikh sistem”, Zh. vychisl. matem. i matem. fiz., 29:2 (1989), 194–201 | MR
[14] Novikov A. E., Novikov E. A., “Chislennoe reshenie zhestkikh zadach s nebolshoi tochnostyu”, Matem. modelirovanie, 22:1 (2010), 46–56 | Zbl
[15] Shampine L. F., Reichelt M. W., “The MATLAB ODE suite”, SIAM J. Sci. Comput., 18:1 (1997), 1–22 | DOI | MR | Zbl
[16] Kozlov O. S., Skvortsov L. M., Khodakovskii V. V., Reshenie differentsialnykh i differentsialno-algebraicheskikh uravnenii v programmnom komplekse “MVTU”, http://model.exponenta.ru/mvtu/20051121.html
[17] Kalitkin N. N., Panchenko S. L., “Optimalnye skhemy dlya zhestkikh neavtonomnykh sistem”, Matem. modelirovanie, 11:6 (1999), 52–81 | MR | Zbl
[18] Bulatov M. V., Tygliyan A. V., Filippov S. S., “Ob odnom klasse odnoshagovykh odnostadiinykh metodov dlya zhestkikh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1251–1265 | MR | Zbl