Efficient implementation of second order implicit Runge--Kutta methods
Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 15-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

Schemes for the implementation of second order implicit Runge–Kutta methods are considered. These schemes allow us to reduce the computational costs when solving stiff problems with low accuracy. Results of their comparison with implicit MATLAB solvers are demonstrated.
Keywords: implicit Runge–Kutta methods, stiff problems, low accuracy methods
Mots-clés : efficient implementation.
@article{MM_2013_25_5_a1,
     author = {L. M. Skvortsov},
     title = {Efficient implementation of second order implicit {Runge--Kutta} methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {15--28},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_5_a1/}
}
TY  - JOUR
AU  - L. M. Skvortsov
TI  - Efficient implementation of second order implicit Runge--Kutta methods
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 15
EP  - 28
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_5_a1/
LA  - ru
ID  - MM_2013_25_5_a1
ER  - 
%0 Journal Article
%A L. M. Skvortsov
%T Efficient implementation of second order implicit Runge--Kutta methods
%J Matematičeskoe modelirovanie
%D 2013
%P 15-28
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_5_a1/
%G ru
%F MM_2013_25_5_a1
L. M. Skvortsov. Efficient implementation of second order implicit Runge--Kutta methods. Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 15-28. http://geodesic.mathdoc.fr/item/MM_2013_25_5_a1/

[1] Gear C. W., Numerical solution of ordinary differential equations: is there anything left to do?, SIAM Review, 23:1 (1981), 10–24 | DOI | MR | Zbl

[2] Curtiss C. F., Hirschfelder J. O., “Integration of stiff equations”, Proc. of the National Academy of Sciences of the USA, 38 (1952), 235–243 | DOI | MR | Zbl

[3] Lebedev V. I., Medovikov A. A., “Yavnyi metod vtorogo poryadka tochnosti dlya resheniya zhestkikh sistem obyknovennykh differentsialnykh uravnenii”, Izv. vuzov. Matematika, 1998, no. 9, 55–63 | MR | Zbl

[4] Skvortsov L. M., “Yavnye adaptivnye metody Runge–Kutty”, Matem. modelirovanie, 23:7 (2011), 73–87 | MR | Zbl

[5] Berzins M., Furzeland R. M., “An adaptive theta method for the solution of stiff and nonstiff differential equations”, Appl. Numer. Math., 9:1 (1992), 1–19 | DOI | MR | Zbl

[6] Cooper C. J., Vignesvaran R., “Some schemes for the implementation of implicit Runge–Kutta methods”, J. Comput. Appl. Math., 45:12 (1993), 213–225 | DOI | MR | Zbl

[7] Hosea M. E., Shampine L. F., “Analysis and implementation of TR-BDF2”, Appl. Numer. Math., 20:1–2 (1996), 21–37 | DOI | MR | Zbl

[8] Gustafsson K., Soderlind G., “Control strategies for the iterative solution of nonlinear equations in ODE solvers”, SIAM J. Sci. Comput., 18:1 (1997), 23–40 | DOI | MR | Zbl

[9] Olsson H., Soderlind G., “The approximate Runge–Kutta computational processes”, BIT, 40:2 (2000), 351–373 | DOI | MR | Zbl

[10] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[11] Skvortsov L. M., “Ekonomichnaya skhema realizatsii neyavnykh metodov Runge–Kutty”, Zh. vychisl. matem. i matem. fiz., 48:11 (2008), 2008–2018 | MR

[12] Kulikov G. Yu., Kuznetsov E. B., Khrustaleva E. Yu., “O kontrole globalnoi oshibki v neyavnykh gnezdovykh metodakh Runge–Kutty gaussovskogo tipa”, Sib. zhurn. vychisl. matem., 14:3 (2011), 245–259

[13] Novikov E. A., Shitov Yu. A., Shokin Yu. I., “O klasse $(m, k)$-metodov resheniya zhestkikh sistem”, Zh. vychisl. matem. i matem. fiz., 29:2 (1989), 194–201 | MR

[14] Novikov A. E., Novikov E. A., “Chislennoe reshenie zhestkikh zadach s nebolshoi tochnostyu”, Matem. modelirovanie, 22:1 (2010), 46–56 | Zbl

[15] Shampine L. F., Reichelt M. W., “The MATLAB ODE suite”, SIAM J. Sci. Comput., 18:1 (1997), 1–22 | DOI | MR | Zbl

[16] Kozlov O. S., Skvortsov L. M., Khodakovskii V. V., Reshenie differentsialnykh i differentsialno-algebraicheskikh uravnenii v programmnom komplekse “MVTU”, http://model.exponenta.ru/mvtu/20051121.html

[17] Kalitkin N. N., Panchenko S. L., “Optimalnye skhemy dlya zhestkikh neavtonomnykh sistem”, Matem. modelirovanie, 11:6 (1999), 52–81 | MR | Zbl

[18] Bulatov M. V., Tygliyan A. V., Filippov S. S., “Ob odnom klasse odnoshagovykh odnostadiinykh metodov dlya zhestkikh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1251–1265 | MR | Zbl