Modeling of subjective judgments of a researcher about the research object model
Matematičeskoe modelirovanie, Tome 25 (2013) no. 4, pp. 102-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the methods of mathematical modeling of incomplete and uncertain knowledge of the model $M(x)$ of research object, expressed in a form of subjective judgments of the researcher about possible values of unknown parameter $x\in X$ which determines the model. The mathematical model of “subjective judgements” is defined as space $(X,{\mathcal P}(X),\mathrm{P}\mathrm{l}^{\widetilde{x}},\mathrm{Be}\mathrm{l}^{\widetilde{x}})$ where indeterminate element $\widetilde{x}$ characterizes (as undefined propositional variable) researcher's subjective judgments about the validity of each value $x\in X$ by values of measures of Plausibility $\mathrm{P}\mathrm{l}^{\widetilde{x}}$ of the equality $\widetilde{x}=x$ and of Belief $\mathrm{Be}\mathrm{l}^{\widetilde{x}}$ of the inequality $\widetilde{x}\not=x$. If the researcher has some observational data of the object, he/she can use it to build an empirical estimate of the indeterminate element $\widetilde{x}$ and empirical model $(X,{\mathcal P}(X),\mathrm{P}\mathrm{l}^{\widetilde{x}},\mathrm{Be}\mathrm{l}^{\widetilde{x}})$ of subjective judgements about possible values of $x\in X$.
Keywords: integral, measure, measure of plausibility, measure of belief, indeterminate random element, random indeterminate element
Mots-clés : intellectual dialogue.
@article{MM_2013_25_4_a8,
     author = {Y. P. Pyt'ev},
     title = {Modeling of subjective judgments of a researcher about the research object model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {102--125},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_4_a8/}
}
TY  - JOUR
AU  - Y. P. Pyt'ev
TI  - Modeling of subjective judgments of a researcher about the research object model
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 102
EP  - 125
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_4_a8/
LA  - ru
ID  - MM_2013_25_4_a8
ER  - 
%0 Journal Article
%A Y. P. Pyt'ev
%T Modeling of subjective judgments of a researcher about the research object model
%J Matematičeskoe modelirovanie
%D 2013
%P 102-125
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_4_a8/
%G ru
%F MM_2013_25_4_a8
Y. P. Pyt'ev. Modeling of subjective judgments of a researcher about the research object model. Matematičeskoe modelirovanie, Tome 25 (2013) no. 4, pp. 102-125. http://geodesic.mathdoc.fr/item/MM_2013_25_4_a8/

[1] Dyubua A., Prad A., Teoriya vozmozhnostei, Radio i svyaz, M., 1990 | MR

[2] Pytev Yu. P., Vozmozhnost kak alternativa veroyatnosti. Matematicheskie i empiricheskie osnovy, prilozheniya, Fizmatlit, M., 2013, 600 pp.

[3] Pytev Yu. P., “Neopredelennye nechetkie modeli i ikh primeneniya”, Intellektualnye sistemy, 8:1–4 (2004), 147–310

[4] Pytev Yu. P., “Empiricheskoe vosstanovlenie mer vozmozhnosti i pravdopodobiya vozmozhnosti v modelyakh ekspertnykh reshenii”, Avtomatika i telemekhanika, 3 (2010), 131–146 | MR

[5] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[6] Barra Zh.-R., Osnovnye ponyatiya matematicheskoi statistiki, Mir, M., 1974 | MR | Zbl

[7] Leman E. L., Proverka statisticheskikh gipotez, Nauka, M., 1979 | MR

[8] Pytev Yu. P., Metody matematicheskogo modelirovaniya izmeritelno-vychislitelnykh sistem, trete izdanie, ispravlennoe i dopolnennoe, Fizmatlit, M., 2012

[9] Rao S. R., Lineinye statisticheskie metody i ikh primeneniya, Nauka, M., 1968 | MR | Zbl