Equivalent numerical schemes for the first and second order gas dynamics equations
Matematičeskoe modelirovanie, Tome 25 (2013) no. 4, pp. 96-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper on the example of explicit scheme for the system of second order gas dynamics nonlinear wave equations (NWE) equivalent scheme for the system of first order gas dynamics equations (GDE) is constructed. Equivalent schemes have great value to obtain initial data for NWE-schemes and for the investigation of their numerical properties.
Mots-clés : Lagrange variables
Keywords: gas dynamics equations, nonlinear wave equations, finite difference schemes, particles and points methods.
@article{MM_2013_25_4_a7,
     author = {N. S. Bochkarev},
     title = {Equivalent numerical schemes for the first and second order gas dynamics equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {96--101},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_4_a7/}
}
TY  - JOUR
AU  - N. S. Bochkarev
TI  - Equivalent numerical schemes for the first and second order gas dynamics equations
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 96
EP  - 101
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_4_a7/
LA  - ru
ID  - MM_2013_25_4_a7
ER  - 
%0 Journal Article
%A N. S. Bochkarev
%T Equivalent numerical schemes for the first and second order gas dynamics equations
%J Matematičeskoe modelirovanie
%D 2013
%P 96-101
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_4_a7/
%G ru
%F MM_2013_25_4_a7
N. S. Bochkarev. Equivalent numerical schemes for the first and second order gas dynamics equations. Matematičeskoe modelirovanie, Tome 25 (2013) no. 4, pp. 96-101. http://geodesic.mathdoc.fr/item/MM_2013_25_4_a7/

[1] Troschiev V. E., Nelineinye volnovye uravneniya gazovoi dinamiki i voprosy postroeniya chislennykh modelei na ikh osnove, Preprint TRINITI 151-A, 2012, 20 pp.

[2] Troschiev V. E., Apollonova O. V., Postroenie i issledovanie konechno-raznostnykh i konechno-elementnykh skhem dlya odnomernykh uravnenii gazovoi dinamiki, Preprint TRINITI 0059, TsNIIATOMINFORM, 1999, 22 pp.

[3] Troschiev V. E., Bochkarev N. S., “Chislennye metody lagranzhevykh chastits-tochek dlya odnomernykh volnovykh uravnenii gazovoi dinamiki”, Matem. modelirovanie, 24:6 (2012), 91–108

[4] Troschiev V. E., Bochkarev N. S., “Chislennyi metod lagranzhevykh chastits na osnove dvumernykh volnovykh uravnenii gazovoi dinamiki”, Matem. modelirovanie, 24:11 (2012), 53–64

[5] Bochkarev N. S., O postroenii ekvivalentnykh raznostnykh skhem dlya odnomernykh uravnenii gazovoi dinamiki pervogo i vtorogo poryadkov, Preprint TRINITI 153-A, 2012, 14 pp.

[6] Rikhtmaier R., Morton K., Raznostnye metody resheniya kraevykh zadach, Mir, M., 1972, 418 pp.

[7] Samarskii A. A., Popov Yu. I., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 2004, 423 pp. | MR

[8] Troschiev V. E., Shagaliev R. M., “Problema sovmescheniya konechno-raznostnykh i konechno-elementnykh skhem v zadachakh gazovoi dinamiki s teploprovodnostyu”, Matem. modelirovanie, 12:2 (2000), 3–11