Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2013_25_4_a6, author = {R. A. Brazhe and V. S. Nefedov}, title = {Mathematical model of transport phenomena in the planar and nanotubular supracrystalline structures}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {83--95}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2013_25_4_a6/} }
TY - JOUR AU - R. A. Brazhe AU - V. S. Nefedov TI - Mathematical model of transport phenomena in the planar and nanotubular supracrystalline structures JO - Matematičeskoe modelirovanie PY - 2013 SP - 83 EP - 95 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2013_25_4_a6/ LA - ru ID - MM_2013_25_4_a6 ER -
%0 Journal Article %A R. A. Brazhe %A V. S. Nefedov %T Mathematical model of transport phenomena in the planar and nanotubular supracrystalline structures %J Matematičeskoe modelirovanie %D 2013 %P 83-95 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2013_25_4_a6/ %G ru %F MM_2013_25_4_a6
R. A. Brazhe; V. S. Nefedov. Mathematical model of transport phenomena in the planar and nanotubular supracrystalline structures. Matematičeskoe modelirovanie, Tome 25 (2013) no. 4, pp. 83-95. http://geodesic.mathdoc.fr/item/MM_2013_25_4_a6/
[1] Iijima S., “Helical microtubules of graphitic carbon”, Nature, 354 (1991), 56–58 | DOI
[2] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., “Electric field effect in atomically thin carbon films”, Science, 306 (2004), 666–669 | DOI
[3] Hill E. W., Geim A. K., Novoselov K., Schedin F., Blake P., “Graphene spin valve devices”, IEEE Trans. Magnet., 42 (2006), 2694–2696 | DOI
[4] Katsnelson M. I., “Graphene: carbon in two dimensions”, Mater. Today, 10 (2007), 20–27 | DOI
[5] Owens F. J., “Electronic and magnetic properties of armchair and zigzag graphene nanoribbons”, J. Chem. Phys., 128 (2008), 194701 | DOI
[6] Goerbig M. O., Moessner R., Doucot B., “Electron interactions in graphene in a strong magnetic field”, Phys. Rev. B, 74 (2006), 161407 | DOI
[7] Terrones H., Terrones M., Hernandez E., Grobert N., Charlier J. C., Ajayan P. M., “New metallic allotropes of planar and tubular carbon”, Phys. Rev. Lett., 84 (2000), 1716–1719 | DOI
[8] Lisenkov S. V., Vinogradov G. A., Astakhova T. Yu., Lebedev N. G., “Geometricheskaya struktura i elektronnye svoistva BN planarnykh i nanotrubnykh struktur tipa «khaekelit»”, FTT, 48:1 (2006), 179–184
[9] Balaban A. T., Rentia C. C., Ciupitu E., “Annuline, benzo-, hetero-, homo-derivatives and their valence isomers”, Comput. Matt. Applic., 17 (1989), 397 | DOI | MR
[10] Brazhe R. A., Karenin A. A., “Kompyuternoe modelirovanie fizicheskikh svoistv suprakristallov”, Izv. vuzov. Povolzhskii region. Fiz.-mat. nauki, 18:2 (2011), 105–112
[11] Brazhe R. A., Karenin A. A., “Kompyuternoe modelirovanie elektricheskikh svoistv suprakristallicheskikh nanotrubok”, Izv. vuzov. Povolzhskii region. Fiz.-mat. nauki, 19:3 (2011), 131–139
[12] Lemme M. C., Echtermeyer T. J., Baus M., Kurz H., “A graphene field-effect device”, IEEE Electron Dev. Lett., 28 (2007), 282–284 | DOI
[13] Matyba P., Yamaguchi H., Eda G., Chhowalla M., Edman L., Robinson N. D., “Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices”, ACS Nano, 4 (2010), 637–642 | DOI
[14] Tarasov B. P., Goldshleger N. F., “Sorbtsiya vodoroda uglerodnymi nanostrukturami”, ISJAEE, 2002, no. 3, 20–39
[15] Nechaev Yu. S., “O prirode, kinetike i predelnykh znacheniyakh sorbtsii vodoroda uglerodnymi nanostrukturami”, UFN, 176:6 (2006), 581–610 | DOI
[16] Hwang E. H., Adam S., Das Sarma S., “Transport in chemically doped graphene in the presence of adsorbed molecules”, Phys. Rev. B, 76 (2007), 195421 | DOI
[17] Vivekchand S. R. C., Chandra Sekhar Rout, Subrahmanyam K. S., Govindaraj A., Rao C. N. R., “Graphene-based electrochemical supercapacitors”, J. Chem. Sci., 120:1 (2010), 9–13 | DOI
[18] Lukes J. R., Zhong H., “Thermal conductivity of individual single-wall carbon nanotubes”, J. Heat Transfer, 129 (2007), 705–716 | DOI
[19] Dubois S. M.-M., Zanolli Z., Declerck X., Charlier J.-C., “Electronic properties and quantum transport in Graphene-based nanostructures”, Eur. Phys. J. B, 2009
[20] Brazhe R. A., Kochaev A. I., Nefedov V. S., “Modul Yunga i koeffitsient Puassona planarnykh i nanotubulyarnykh suprakristallicheskikh struktur”, FTT, 54:7 (2012), 1347–1349
[21] Bonch-Bruevich V. L., Kalashnikov S. G., Fizika poluprovodnikov, Nauka, M., 1977, 679 pp.
[22] Savelev I. V., Kurs obschei fiziki, V 3-kh t., v. 2, Elektrichestvo i magnetizm. Volny. Optika, Nauka. Gl. red. fiz.-mat. lit., M., 1988, 496 pp.
[23] Brazhe R. A., Karenin A. A., Kochaev A. I., Meftakhutdinov R. M., “Uprugie kharakteristiki uglerodnykh 2D-suprakristallov v sravnenii s grafenom”, Fizika tverdogo tela, 53:7 (2011), 1406–1408
[24] Brazhe R. A., Kochaev A. I., Meftakhutdinov R. M., “Uprugie volny v uglerodnykh 2D-suprakristallakh”, Fizika tverdogo tela, 53:8 (2011), 1614–1617
[25] Irodov I. E., Sbornik zadach po atomnoi i yadernoi fizike, Atomizdat, M., 1976, 232 pp.
[26] Gantmakher V. F., Levinson I. B., Rasseyanie nositelei toka v metallakh i poluprovodnikakh, Nauka, M., 1984, 352 pp.
[27] Hone J., Leaguno M. G., Nemes N. M., Johnson A. T., Fisher J. E., Walters D. A., Casavant M. J., Schmidt J., Smalley R. E., “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films”, Appl. Phys. Lett., 77 (2000), 666–669 | DOI
[28] Lee J. U., Yoon D., Kim H., Lee S. W., Cheong H., “Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy”, Phys. Rev. B, 83 (2011), 081419 | DOI
[29] Lozovik Yu. E., Merkulova S. P., Sokolik A. A., “Kollektivnye elektronnye yavleniya v grafene”, UFN, 178:7 (2008), 757–776