On convergence acceleration of method of identifying diagonal element for problems of radiativ heat transfer with scattering
Matematičeskoe modelirovanie, Tome 25 (2013) no. 4, pp. 74-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a method used to identify the diagonal element for the iterative solution of implicit finite-difference equations approximating a non-linear system of nonstationary differential equations — an integro-differential spectral kinetic photon transport equation and energy equation. Two alternatives of the algorithm are investigated using the WDD-scheme in slab geometry as an example. Theoretical convergence estimates and test calculations are provided.
Keywords: radiative heat transfer, iteration method, finite-difference scheme.
@article{MM_2013_25_4_a5,
     author = {V. V. Zaviyalov},
     title = {On convergence acceleration of method of identifying diagonal element for problems of radiativ heat transfer with scattering},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {74--82},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_4_a5/}
}
TY  - JOUR
AU  - V. V. Zaviyalov
TI  - On convergence acceleration of method of identifying diagonal element for problems of radiativ heat transfer with scattering
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 74
EP  - 82
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_4_a5/
LA  - ru
ID  - MM_2013_25_4_a5
ER  - 
%0 Journal Article
%A V. V. Zaviyalov
%T On convergence acceleration of method of identifying diagonal element for problems of radiativ heat transfer with scattering
%J Matematičeskoe modelirovanie
%D 2013
%P 74-82
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_4_a5/
%G ru
%F MM_2013_25_4_a5
V. V. Zaviyalov. On convergence acceleration of method of identifying diagonal element for problems of radiativ heat transfer with scattering. Matematičeskoe modelirovanie, Tome 25 (2013) no. 4, pp. 74-82. http://geodesic.mathdoc.fr/item/MM_2013_25_4_a5/

[1] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981, 456 pp. | MR

[2] Bass L. P., Voloschenko A. M., Germogenova T. A., Metody diskretnykh ordinat v zadachakh o perenose izlucheniya, IPM im. M. V. Keldysha AN SSSR, M., 1986

[3] Chetverushkin B. N., Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985, 304 pp. | Zbl

[4] Rybicki G. B., “A modified Feautrier method”, Journal of Quantitative Spectroscopy and Radiative Transfer, 11:6 (1971), 589–595 | DOI

[5] Gusev V. Yu., Kozmanov M. Yu., Rachilov E. B., “Metod resheniya neyavnykh raznostnykh uravnenii, approksimiruyuschikh sistemy uravnenii perenosa i diffuzii izlucheniya”, ZhVM i MF, 24:12 (1984), 1842–1849 | MR | Zbl

[6] Gusev V. Yu., Zavyalov V. V., Kozmanov M. Yu., “Ob uskorenii skhodimosti iteratsii dlya sistemy perenosa teplovogo izlucheniya v kineticheskom priblizhenii”, VANT. Seriya «Matmodelirovanie fizicheskikh protsessov», 2003, no. 2, 21–27 | MR

[7] Gadzhiev A. D., Seleznev V. N., Shestakov A. A., “DSn-metod s iskusstvennoi dissipatsiei i VDM-metod uskoreniya iteratsii dlya chislennogo resheniya dvumernogo uravneniya perenosa teplovogo izlucheniya v kineticheskoi modeli”, VANT. Seriya «Matmodelirovanie fizicheskikh protsessov», 2003, no. 2, 33–46 | MR

[8] Gadzhiev A. D., Shestakov A. A., “Metody vydeleniya diagonalnogo elementa dlya uskoreniya iteratsii pri chislennom reshenii uravneniya perenosa teplovogo izlucheniya v diffuzionnykh priblizheniyakh”, VANT. Seriya «Matmodelirovanie fizicheskikh protsessov», 2010, no. 3, 15–27

[9] Groshev E. V., “O primenenii metoda Raibiki k protsessu resheniya sistemy uravnenii perenosa izlucheniya iteratsiyami po granichnym usloviyam”, VANT. Seriya «Matmodelirovanie fizicheskikh protsessov», 2010, no. 1, 39–47

[10] Zavyalov V. V., Shestakov A. A., “Vydelenie diagonalnogo elementa dlya uskoreniya iteratsii v mnogogruppovom kineticheskom priblizhenii pri raschete teploperenosa”, Matematicheskoe modelirovanie, 22:2 (2010), 93–104

[11] Karlykhanov N. G., “Postroenie optimalnykh mnogodiagonalnykh metodov resheniya zadach perenosa izlucheniya”, ZhVM i MF, 37:4 (1997), 494–498 | MR | Zbl

[12] Fleck J. A., Cummings J. D., “An Implicit Monte-Carlo Scheme for Calculating Time and Frequency Dependent Nonlinear Radiation Transport”, Journal of Computational Physics, 8 (1971), 313–342 | DOI | MR | Zbl

[13] Troschiev V. E., Troschiev Yu. V., “Monotonnye raznostnye skhemy s vesom dlya uravneniya perenosa v ploskom sloe”, Matematicheskoe modelirovanie, 15:1 (2003), 3–13 | MR