On the initial-boundary heat conduction problem for system with phase transfer
Matematičeskoe modelirovanie, Tome 25 (2013) no. 3, pp. 119-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to constructing of the mathematical model of aluminum alloy solidification process in a fettled steel mold with a centered thermosyphon. Thermal fields modeling is included boundary conditions of the second and third kind (radiative-convective heat exchange with the environment and the heat exchange with a thermosyphon), contact conditions of the fourth kind on the interface of dissimilar materials, as well as the construction of the phase transition boundary on the basis of the continuous calculation principles.
Keywords: nonlinear heat conduction equation with internal heat sources, continuous calculation schemes, control volume methods.
@article{MM_2013_25_3_a9,
     author = {G. Sevastyanov and A. Sevastyanov and V. Odinokov},
     title = {On the initial-boundary heat conduction problem for system with phase transfer},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {119--133},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_3_a9/}
}
TY  - JOUR
AU  - G. Sevastyanov
AU  - A. Sevastyanov
AU  - V. Odinokov
TI  - On the initial-boundary heat conduction problem for system with phase transfer
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 119
EP  - 133
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_3_a9/
LA  - ru
ID  - MM_2013_25_3_a9
ER  - 
%0 Journal Article
%A G. Sevastyanov
%A A. Sevastyanov
%A V. Odinokov
%T On the initial-boundary heat conduction problem for system with phase transfer
%J Matematičeskoe modelirovanie
%D 2013
%P 119-133
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_3_a9/
%G ru
%F MM_2013_25_3_a9
G. Sevastyanov; A. Sevastyanov; V. Odinokov. On the initial-boundary heat conduction problem for system with phase transfer. Matematičeskoe modelirovanie, Tome 25 (2013) no. 3, pp. 119-133. http://geodesic.mathdoc.fr/item/MM_2013_25_3_a9/

[1] Stulov V. V., Sevastyanov A. M., “Tekhnologii zalivki alyuminievogo splava v futerovannuyu formu pri poluchenii polykh otlivok”, Liteinoe proizvodstvo, 2010, no. 6, 19–22

[2] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971, 553 pp. | MR | Zbl

[3] Samarskii A. A., Moiseenko B. D., “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, Zhurnal vychislitelnoi matematiki i matem. fiz., 5:5 (1965), 816–827 | MR

[4] Sevastyanov G. M., Modelirovanie napryazhenno-deformirovannogo sostoyaniya pri zalivke i zatverdevanii metalla v keramicheskoi obolochkovoi forme, Avtoreferat diss. ... kand. fiz.-mat.nauk, Institut avtomatiki i protsessov upravleniya DVO RAN, Vladivostok, 2011

[5] Odinokov V. I., Chislennoe issledovanie protsessa deformatsii materialov beskoordinatnym metodom, Dalnauka, Vladivostok, 1995, 168 pp.

[6] Odinokov V. I., Kaplunov B. G., Peskov A. V., Bakov A. A., Matematicheskoe modelirovanie slozhnykh tekhnologicheskikh protsessov, Nauka, M., 2008, 176 pp.

[7] Mikheev M. A., Mikheeva I. M., Osnovy teploperedachi, Energiya, M., 1977, 344 pp.

[8] Tsaplin A. I., Teplofizika v metallurgii, PGTU, Perm, 2008, 230 pp.

[9] Odinokov V. I., Sevastyanov G. M., Sapchenko I. G., “Evolyutsiya napryazhennogo sostoyaniya keramicheskoi formy pri nestatsionarnom vneshnem teplovom vozdeistvii”, Matematicheskoe modelirovanie, 22:11 (2010), 97–108 | Zbl

[10] Lomakin V. A., Teoriya uprugosti neodnorodnykh tel, Izd-vo Mosk. un-ta, M., 1976, 368 pp.

[11] Albu A. F., Zubov V. I., “Matematicheskoe modelirovanie i issledovanie protsessa kristallizatsii metalla v liteinom dele”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 47:5 (2007), 882–902 | MR

[12] Albu A. F., Zubov V. I., “O vybore funktsionala i raznostnoi skhemy pri reshenii zadachi optimalnogo upravleniya protsessom kristallizatsii metalla”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 51:1 (2011), 24–38 | MR | Zbl