On numerical modeling of dynamics of irreversible deforming and fracture of oil-bearing layer
Matematičeskoe modelirovanie, Tome 25 (2013) no. 3, pp. 62-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

A paper dealing with numerical simulation in two-dimensional plane deformed state of dynamics for oil-gas saturated medium near borehole under sudden removal pressure on internal wall of the borehole. The layer is represented by the model of damageable thermoelastoplastic material with two parameters of damaging. The criterion of the beginning of new free surfaces within the material uses the principle of the critical value of specific dissipated energy. For explicitly construction of coasts of macroscopic infraction of material continuity we apply algorithm of decomposition Lagrangian mesh.
Keywords: dynamics of irreversible deforming and fracture, damageable parameters, thermoelastoplasticity, oil-bearing layer.
@article{MM_2013_25_3_a5,
     author = {A. B. Kiselev and P. P. Zacharov},
     title = {On numerical modeling of dynamics of irreversible deforming and fracture of oil-bearing layer},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {62--74},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_3_a5/}
}
TY  - JOUR
AU  - A. B. Kiselev
AU  - P. P. Zacharov
TI  - On numerical modeling of dynamics of irreversible deforming and fracture of oil-bearing layer
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 62
EP  - 74
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_3_a5/
LA  - ru
ID  - MM_2013_25_3_a5
ER  - 
%0 Journal Article
%A A. B. Kiselev
%A P. P. Zacharov
%T On numerical modeling of dynamics of irreversible deforming and fracture of oil-bearing layer
%J Matematičeskoe modelirovanie
%D 2013
%P 62-74
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_3_a5/
%G ru
%F MM_2013_25_3_a5
A. B. Kiselev; P. P. Zacharov. On numerical modeling of dynamics of irreversible deforming and fracture of oil-bearing layer. Matematičeskoe modelirovanie, Tome 25 (2013) no. 3, pp. 62-74. http://geodesic.mathdoc.fr/item/MM_2013_25_3_a5/

[1] Kachanov L. M., “O vremeni razrusheniya v usloviyakh polzuchesti”, Izv. AN SSSR. OTN. Mekhanika i mashinostroenie, 1958, no. 8, 26–31 | Zbl

[2] Rabotnov Yu. N., “Mekhanizm dlitelnogo razrusheniya”, Voprosy prochnosti materialov i konstruktsii, Izd-vo AN SSSR, M., 1959, 5–7

[3] Ilyushin A. A., “Ob odnoi teorii dlitelnoi prochnosti”, Izv. AN SSSR. MTT, 1967, no. 3, 21–35

[4] Kachanov L. M., Introduction to continuum damage mechanics, Nijhoff, Dordrecht–Boston, 1986, 135 pp. | Zbl

[5] Kondaurov V. I., Nikitin L. V., Teoreticheskie osnovy reologii geomaterialov, Nauka, M., 1990, 207 pp.

[6] Astafev V. I., Radaev Yu. N., Stepanova L. V., Nelineinaya mekhanika razrusheniya, Izd-vo «Samarskii universitet», Samara, 2001, 534 pp.

[7] Kondaurov V. I., Fortov V. E., Osnovy termomekhaniki kondensirovannoi sredy, Izd-vo MFTI, M., 2002, 336 pp.

[8] Kukudzhanov V. N., “Svyazannye modeli uprugoplastichnosti i povrezhdennosti i ikh integrirovanie”, Izv. RAN. MTT, 2006, no. 6, 103–135

[9] Kukudzhanov V. N., “Termomekhanicheskaya svyazannaya model plastichnosti, povrezhdennosti i razrusheniya”, Materialy Mezhd. nauchnogo simp. po problemam mekhaniki deformiruemykh tel, posv. 100-letiyu so dnya rozhdeniya A. A. Ilyushina, Uprugost i neuprugost, 6, Izd-vo Mosk. un-ta, M., 2011, 379–384

[10] Kiselev A. B., Yumashev M. V., “Deformirovanie i razrushenie pri udarnom nagruzhenii. Model povrezhdennoi termouprugoplasticheskoi sredy”, PMTF, 1990, no. 5, 116–123 | MR

[11] Kiselev A. B., Yumashev M. V., “Matematicheskaya model deformirovaniya i razrusheniya tverdogo topliva pri udarnom nagruzhenii”, PMTF, 1992, no. 6, 126–134

[12] Kiselev A. B., “The model of thermoelastoplastic deformation and fracture of materials under Multiaxial loading”, Fourth Int. Conf. on Biaxial/Multiaxial Fatigue (May 31 – June 3, 1994, St. Germain en Laye, France), v. 2, 183–186

[13] Kiselev A. B., “Mathematical modeling of dynamical deforming and combined microfracture of damageable thermoelastoviscoplastic medium”, Advanced Methods in Materials Processing Defects, Studies in Applied Mechanics, 45, Elsevier, Amsterdam, 1997, 43–50 | DOI

[14] Kiselev A. B., “Matematicheskoe modelirovanie dinamicheskogo deformirovaniya i kombinirovannogo razrusheniya termovyazkouprugoplasticheskoi sredy”, Vest. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1998, no. 6, 32–40 | MR | Zbl

[15] Kiselev A. B., Lukyanov A. A., Tersilen M., “Chislennoe modelirovanie dinamiki rasprostraneniya krivolineinykh treschin gidrorazryva”, Vestn. MGU. Ser. 1. Mat. Mekh., 2004, no. 1, 36–41 | Zbl

[16] Kiselev A. B., Lukyanov A. A., “Numerical investigation of hydraulic fracture propagation”, J. of Mechanical Behavior of Materials, 19:5 (2009), 297–305

[17] Galin L. A., “Ploskaya uprugo-plasticheskaya zadacha”, PMM, 10:3 (1946), 367–386 | MR | Zbl

[18] Annin B. D., Cherepanov G. P., Uprugo-plasticheskaya zadacha, Nauka, Novosibirsk, 1983, 238 pp. | Zbl

[19] Timoshenko S. P., Guder Dzh., Teoriya uprugosti, Nauka, M., 1975, 560 pp.

[20] Kukudzhanov V. N., Vychislitelnaya mekhanika sploshnykh sred, Fizmatlit, M., 2008, 320 pp.

[21] Petrov I. B., Lobanov A. I., Lektsii po vychislitelnoi matematike, Internet-Universitet, M., 2006, 522 pp.

[22] Uilkins M. L., “Raschet uprugoplasticheskikh techenii”, Vychislitelnye metody v gidrodinamike, Mir, M., 1967, 212–263

[23] Wilkins M. L., Computer simulation of dynamic phenomena, Springer-Verlag, Berlin–Heidelberg–New York, 1999, 246 pp. | MR

[24] Nemirovich-Danchenko M. M., “Model gipouprugoi khrupkoi sredy: primenenie k raschetu deformirovaniya i razrusheniya”, Fizicheskaya mezomekhanika, 1:2 (1998), 107–114

[25] Shen Y. M., Wilkins M. L., “Stress analysis of crack problems with a three-dimensional time-dependent computer program”, Int. J. of Fracture, 2:4 (1976), 607–617

[26] Stefanov Yu. P., “Nekotorye osobennosti chislennogo modelirovaniya povedeniya uprugoplasticheskikh materialov”, Fizicheskaya mezomekhanika, 8:3 (2005), 129–142 | MR

[27] Kiselev A. B., Zakharov P. P., “Matematicheskoe modelirovanie protsessov neobratimogo dinamicheskogo deformirovaniya i razrusheniya povrezhdaemykh materialov i konstruktsii”, Supervychisleniya i matematicheskoe modelirovanie, Trudy XII mezhd. seminara, ed. R. M. Shagaliev, FGUP «RFYaTs-VNIIEF», Sarov, 2011, 202–207

[28] Kiselev A. B., Zakharov P. P., Nekhaeva O. V., “Matematicheskoe modelirovanie dinamicheskikh protsessov neobratimogo deformirovaniya i razrusheniya povrezhdaemykh sred. Prilozheniya k problemam geodinamiki”, Vestn. Nizhegorodskogo un-ta, 2011, no. 4(2), 459–461 | MR

[29] Zakharov P. P., Chislennoe modelirovanie dinamiki deformirovaniya i razrusheniya neftenosnogo plasta, Diss. ... kand. fiz.-mat.nauk, Mekh.-mat. f-t MGU im. M. V. Lomonosova, M., 2011, 105 pp.

[30] V. M. Fomin, A. I. Gulidov, G. A. Sapozhnikov i dr., Vysokoskorostnoe vzaimodeistvie tel, Izd. SO RAN, Novosibirsk, 1999, 600 pp.