Implicid numerical method for differential equations
Matematičeskoe modelirovanie, Tome 25 (2013) no. 3, pp. 25-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Implicit method for differential equations based on using second member of equation derivatives combined with space of discrepancy searching in next integration step is considered. Two examples of solving equations with offered method are presented. Features of method are determined.
Keywords: implicit method, numerical solution of differential equations, gas-dynamics equations.
@article{MM_2013_25_3_a2,
     author = {A. M. Lipanov and S. A. Karskanov},
     title = {Implicid numerical method for differential equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {25--32},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_3_a2/}
}
TY  - JOUR
AU  - A. M. Lipanov
AU  - S. A. Karskanov
TI  - Implicid numerical method for differential equations
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 25
EP  - 32
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_3_a2/
LA  - ru
ID  - MM_2013_25_3_a2
ER  - 
%0 Journal Article
%A A. M. Lipanov
%A S. A. Karskanov
%T Implicid numerical method for differential equations
%J Matematičeskoe modelirovanie
%D 2013
%P 25-32
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_3_a2/
%G ru
%F MM_2013_25_3_a2
A. M. Lipanov; S. A. Karskanov. Implicid numerical method for differential equations. Matematičeskoe modelirovanie, Tome 25 (2013) no. 3, pp. 25-32. http://geodesic.mathdoc.fr/item/MM_2013_25_3_a2/

[1] Lipanov A. M., Kisarov Yu. F., Klyuchnikov I. G., Chislennyi eksperiment v klassicheskoi gidromekhanike turbulentnykh potokov, Izd-vo UrO RAN, Ekaterinburg, 2001, 162 pp.

[2] Kalitkin H. H., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[3] Lipanov A. M., Teoreticheskaya gidromekhanika nyutonovskikh sred, Nauka, M., 2011, 551 pp.