The model of the spiral waves in the blood coagulation
Matematičeskoe modelirovanie, Tome 25 (2013) no. 3, pp. 14-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find spiral waves in the mathematical models of blood coagulation dynamics. There is description the effect of the “stop” the spiral aves, with help of the exact solution.
Keywords: the model of blood coagulation, the effect of the "stop" the spiral wave, exact.
@article{MM_2013_25_3_a1,
     author = {E. K. Vdovina and K. A. Volosov},
     title = {The model of the spiral waves in the blood coagulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {14--24},
     year = {2013},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_3_a1/}
}
TY  - JOUR
AU  - E. K. Vdovina
AU  - K. A. Volosov
TI  - The model of the spiral waves in the blood coagulation
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 14
EP  - 24
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_3_a1/
LA  - ru
ID  - MM_2013_25_3_a1
ER  - 
%0 Journal Article
%A E. K. Vdovina
%A K. A. Volosov
%T The model of the spiral waves in the blood coagulation
%J Matematičeskoe modelirovanie
%D 2013
%P 14-24
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/MM_2013_25_3_a1/
%G ru
%F MM_2013_25_3_a1
E. K. Vdovina; K. A. Volosov. The model of the spiral waves in the blood coagulation. Matematičeskoe modelirovanie, Tome 25 (2013) no. 3, pp. 14-24. http://geodesic.mathdoc.fr/item/MM_2013_25_3_a1/

[1] Zarnitsina V. I., Ataullakhanov F. I., Lobanov A. I., Morozova O. L., “Dynamics of spatially non-uniform patterning in the model of blood coagulation”, Chaos, 11:1 (2001), 57–70 | DOI

[2] Ataullakhanov F. I., Guriya G. T., Safroshkina A. Yu., “Prostranstvennye aspekty dinamiki svertyvaniya krovi. II: Fenomenologicheskaya model”, Biofizika, 39:1 (1994), 97–104

[3] Lobanov A. I., Starozhilova T. K., Zarnitsina V. I., Ataullakhanov F. I., “Sravnenie dvukh matematicheskikh modelei dlya opisaniya prostranstvennoi dinamiki protsessa svertyvaniya krovi”, Matematicheskoe modelirovanie, 15:1 (2003), 14–28 | MR | Zbl

[4] Krutikova M. P., Kurilenko I. A., Lobanov A. I., Starozhilova T. K., “Dvumernye statsionarnye struktury v matematicheskoi modeli svertyvaniya krovi s uchetom gipotezy o pereklyuchenii aktivnosti trombina”, Matematicheskoe modelirovanie, 16:12 (2004), 85–95 | Zbl

[5] Volosov K. A., Metodika analiza evolyutsionnykh sistem s raspredelennymi parametrami, Diss. na soiskanie uch.st. d.f-m.n., MIEM, 2007 , http://eqworld.ipmnet.ruwww.aplsmath.ru

[6] Volosova A. K., Volosov K. A., “Construction solutions of PDE in Parametric Form”, International Journal of Mathematics and Mathematical Siences, 2009, 319268, 17 pp. http://www.hindawi.com/journals/ijmms/2009/319269.html | DOI | MR

[7] Journal of Applied and Industrial Mathematics, 3:4 (2009), 519–527 | DOI | MR | Zbl

[8] Volosova A. K., Matematicheskoe modelirovanie nelineinoi dinamiki sistemy otkrytogo gipertsikla, Diss. na soisk. uch. st. k.f.-m.n., MIIT, 2011 www.aplsmath.ru

[9] Cherniha R., King J. R., “Lie symmetries of nonlinear multidimensional reaction-diffusion systems, II”, J. Phys. A: Math.and Gen., 36 (2003), 405–425 | DOI | MR | Zbl

[10] Vorobev E. M., Vvedenie v sistemu «Matematika», Finansy i statistika, M., 1998