The model of the spiral waves in the blood coagulation
Matematičeskoe modelirovanie, Tome 25 (2013) no. 3, pp. 14-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find spiral waves in the mathematical models of blood coagulation dynamics. There is description the effect of the “stop” the spiral aves, with help of the exact solution.
Keywords: the model of blood coagulation, the effect of the "stop" the spiral wave, exact.
@article{MM_2013_25_3_a1,
     author = {E. K. Vdovina and K. A. Volosov},
     title = {The model of the spiral waves in the blood coagulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {14--24},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_3_a1/}
}
TY  - JOUR
AU  - E. K. Vdovina
AU  - K. A. Volosov
TI  - The model of the spiral waves in the blood coagulation
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 14
EP  - 24
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_3_a1/
LA  - ru
ID  - MM_2013_25_3_a1
ER  - 
%0 Journal Article
%A E. K. Vdovina
%A K. A. Volosov
%T The model of the spiral waves in the blood coagulation
%J Matematičeskoe modelirovanie
%D 2013
%P 14-24
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_3_a1/
%G ru
%F MM_2013_25_3_a1
E. K. Vdovina; K. A. Volosov. The model of the spiral waves in the blood coagulation. Matematičeskoe modelirovanie, Tome 25 (2013) no. 3, pp. 14-24. http://geodesic.mathdoc.fr/item/MM_2013_25_3_a1/

[1] Zarnitsina V. I., Ataullakhanov F. I., Lobanov A. I., Morozova O. L., “Dynamics of spatially non-uniform patterning in the model of blood coagulation”, Chaos, 11:1 (2001), 57–70 | DOI

[2] Ataullakhanov F. I., Guriya G. T., Safroshkina A. Yu., “Prostranstvennye aspekty dinamiki svertyvaniya krovi. II: Fenomenologicheskaya model”, Biofizika, 39:1 (1994), 97–104

[3] Lobanov A. I., Starozhilova T. K., Zarnitsina V. I., Ataullakhanov F. I., “Sravnenie dvukh matematicheskikh modelei dlya opisaniya prostranstvennoi dinamiki protsessa svertyvaniya krovi”, Matematicheskoe modelirovanie, 15:1 (2003), 14–28 | MR | Zbl

[4] Krutikova M. P., Kurilenko I. A., Lobanov A. I., Starozhilova T. K., “Dvumernye statsionarnye struktury v matematicheskoi modeli svertyvaniya krovi s uchetom gipotezy o pereklyuchenii aktivnosti trombina”, Matematicheskoe modelirovanie, 16:12 (2004), 85–95 | Zbl

[5] Volosov K. A., Metodika analiza evolyutsionnykh sistem s raspredelennymi parametrami, Diss. na soiskanie uch.st. d.f-m.n., MIEM, 2007 , http://eqworld.ipmnet.ruwww.aplsmath.ru

[6] Volosova A. K., Volosov K. A., “Construction solutions of PDE in Parametric Form”, International Journal of Mathematics and Mathematical Siences, 2009, 319268, 17 pp. http://www.hindawi.com/journals/ijmms/2009/319269.html | DOI | MR

[7] Journal of Applied and Industrial Mathematics, 3:4 (2009), 519–527 | DOI | MR | Zbl

[8] Volosova A. K., Matematicheskoe modelirovanie nelineinoi dinamiki sistemy otkrytogo gipertsikla, Diss. na soisk. uch. st. k.f.-m.n., MIIT, 2011 www.aplsmath.ru

[9] Cherniha R., King J. R., “Lie symmetries of nonlinear multidimensional reaction-diffusion systems, II”, J. Phys. A: Math.and Gen., 36 (2003), 405–425 | DOI | MR | Zbl

[10] Vorobev E. M., Vvedenie v sistemu «Matematika», Finansy i statistika, M., 1998