Modelling of transport processes in problem of Couette flow at incomplete accommodation of a tangential impulse of gas molecules by the walls of the channel
Matematičeskoe modelirovanie, Tome 25 (2013) no. 2, pp. 111-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the example of a problem about Couette current the analytical method of calculation by the applying simple numerical procedure of macro parameters of gas in channels which thickness is commensurable with average length of free run of molecules of gas is offered. As the basic equation it is used linearize BGK (Bhatnagar, Gross, Krook) model of the Boltzmann kinetic equation, and as a boundary condition on walls of the channel — the model mirror-diffuse reflections. For various values of thickness of the channel and factor of accommodation of a tangential impulse of molecules of gas walls of the channel structures of mass speed of gas in the channel are constructed and values distinct from zero components of the tenzor of viscous pressure and a stream of weight of the gas falling unit of width of the channel are calculated. Comparison with the similar results published in an open press is lead.
Keywords: Boltzmann kinetic equation, the model kinetic equations, exact analytical decisions, models of boundary conditions.
@article{MM_2013_25_2_a8,
     author = {V. V. Lukashev and V. N. Popov and A. A. Yushkanov},
     title = {Modelling of transport processes in problem of {Couette} flow at incomplete accommodation of a tangential impulse of gas molecules by the walls of the channel},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {111--124},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_2_a8/}
}
TY  - JOUR
AU  - V. V. Lukashev
AU  - V. N. Popov
AU  - A. A. Yushkanov
TI  - Modelling of transport processes in problem of Couette flow at incomplete accommodation of a tangential impulse of gas molecules by the walls of the channel
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 111
EP  - 124
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_2_a8/
LA  - ru
ID  - MM_2013_25_2_a8
ER  - 
%0 Journal Article
%A V. V. Lukashev
%A V. N. Popov
%A A. A. Yushkanov
%T Modelling of transport processes in problem of Couette flow at incomplete accommodation of a tangential impulse of gas molecules by the walls of the channel
%J Matematičeskoe modelirovanie
%D 2013
%P 111-124
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_2_a8/
%G ru
%F MM_2013_25_2_a8
V. V. Lukashev; V. N. Popov; A. A. Yushkanov. Modelling of transport processes in problem of Couette flow at incomplete accommodation of a tangential impulse of gas molecules by the walls of the channel. Matematičeskoe modelirovanie, Tome 25 (2013) no. 2, pp. 111-124. http://geodesic.mathdoc.fr/item/MM_2013_25_2_a8/

[1] Lifshits E. M., Pitaevskii L. P., Fizicheskaya kinetika, Nauka, M., 1979, 528 pp. | MR | Zbl

[2] Kloss Yu. Yu., Cheremisin F. G., Shuvalov P. V., “Reshenie uravneniya Boltsmana na graficheskikh protsessorakh”, Vychislitelnye metody i programmirovanie, 11 (2010), 144–152

[3] Barihcello L. B., Camargo M., Podrigues P., Siewert C. E., “Unified solutions to classical flow problems based on the BGK model”, ZAMP, 52 (2001), 517–534 | DOI | MR

[4] Siewert C. E., “Poiseuille, Thermal Creep and Couette Flow: Results Based on the CES Model Linearized Boltzmann Equation”, European Journal of Mechanics B/Fluids, 21 (2002), 579–597 | DOI | MR

[5] Siewert C. E., “The linearized Boltzmann Equation: Concise and Accurate Solutions to Basic Flow Problems”, Zeitschrift fur Angewandte Mathematic und Physik, 54 (2003), 273–303 | DOI | MR | Zbl

[6] Garcia R. D. M., Siewert C. E., “The Linearized Boltzmann Equation with Cercignani–Lampis Boundary Conditions: Basic Flow Problems in a Plane Channel”, European Journal of Mechanics B/Fluids, 28 (2009), 387–396 | DOI | MR | Zbl

[7] Latyshev A. V., Yushkanov A. A., “Vliyanie svoistv poverkhnosti na kharakteristiki gaza mezhdu plastinami v zadache Kuetta. Pochti zerkalnye usloviya”, Poverkhnost. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya, 1999, no. 10, 35–41

[8] Popov V. N., Testova I. V., Yushkanov A. A., “Analiticheskoe reshenie zadachi o techenii Kuetta v ploskom kanale s beskonechnymi parallelnymi stenkami”, ZhTF, 81:1 (2011), 53–58

[9] Latyshev A. V., Yushkanov A. A., “Zadacha Smolukhovskogo v metalle s zerkalno-diffuznymi granichnymi usloviyami”, TMF, 161:1 (2009), 95–108 | DOI | MR | Zbl

[10] Kogan M. N., Dinamika razrezhennogo gaza. Kineticheskaya teoriya, Nauka, M., 1967, 440 pp.

[11] Cherchinyani K., Matematicheskie metody v kineticheskoi teorii gazov, Mir, M., 1973, 245 pp. | MR