Grid-characteristic method using high-order interpolation on tetrahedral hierarchical meshes with a multiple time step
Matematičeskoe modelirovanie, Tome 25 (2013) no. 2, pp. 42-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this article is to develop a grid-characteristic method for high-performance computing systems using unstructured tetrahedral hierarchical meshes, a multiple time step and the high-order interpolation for simulating complex spatial dynamic processes in heterogeneous environments. This method has the precise formulation of contact conditions and is suitable for the physically correct solution of the seismology and seismic prospecting problems in complex heterogeneous environments. The use of the hierarchical meshes allows to take into account a large number of non-homogeneous inclusions (cracks, cavities, etc.). The use of this grid-characteristic method makes it possible to use the multiple time step and thereby increase productivity and significantly reduce the computation time. The methods developed for high-order interpolation on unstructured tetrahedral meshes can solve the problems of seismology and seismic prospecting with the approximation in space to the fifth degree inclusive.
Keywords: grid-characteristic method, tetrahedral grids, high-order interpolation, prospecting seismology, seismology, parallel algorithms, hierarchical grids.
@article{MM_2013_25_2_a3,
     author = {I. B. Petrov and A. V. Favorskaya and A. V. Sannikov and I. E. Kvasov},
     title = {Grid-characteristic method using high-order interpolation on tetrahedral hierarchical meshes with a multiple time step},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {42--52},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_2_a3/}
}
TY  - JOUR
AU  - I. B. Petrov
AU  - A. V. Favorskaya
AU  - A. V. Sannikov
AU  - I. E. Kvasov
TI  - Grid-characteristic method using high-order interpolation on tetrahedral hierarchical meshes with a multiple time step
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 42
EP  - 52
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_2_a3/
LA  - ru
ID  - MM_2013_25_2_a3
ER  - 
%0 Journal Article
%A I. B. Petrov
%A A. V. Favorskaya
%A A. V. Sannikov
%A I. E. Kvasov
%T Grid-characteristic method using high-order interpolation on tetrahedral hierarchical meshes with a multiple time step
%J Matematičeskoe modelirovanie
%D 2013
%P 42-52
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_2_a3/
%G ru
%F MM_2013_25_2_a3
I. B. Petrov; A. V. Favorskaya; A. V. Sannikov; I. E. Kvasov. Grid-characteristic method using high-order interpolation on tetrahedral hierarchical meshes with a multiple time step. Matematičeskoe modelirovanie, Tome 25 (2013) no. 2, pp. 42-52. http://geodesic.mathdoc.fr/item/MM_2013_25_2_a3/

[1] Kondaurov V. I., Fortov V. E., Osnovy termomekhaniki kondensirovannoi sredy, MFTI, M., 2002, 336 pp.

[2] Magomedov K. M., Kholodov A. S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988, 288 pp. | MR

[3] Petrov I. B., Lobanov A. I., Lektsii po vychislitelnoi matematike, Internet-Universitet Informatsionnykh Tekhnologii, M., 2006, 523 pp.

[4] Petrov I. B., Favorskaya A. V., “Biblioteka po interpolyatsii vysokikh poryadkov na nestrukturirovannykh treugolnykh i tetraedralnykh setkakh”, Informatsionnye tekhnologii, 2011, no. 9, 30–32

[5] Kvasov I. E., Petrov I. B., Chelnokov F. B., “Raschet volnovykh protsessov v neodnorodnykh prostranstvennykh konstruktsiyakh”, Matematicheskoe modelirovanie, 21:5 (2009), 3–9 | Zbl

[6] Kvasov I. E., Pankratov S. A., Petrov I. B., “Chislennoe modelirovanie seismicheskikh otklikov v mnogosloinykh geologicheskikh sredakh setochno-kharakteristicheskim metodom”, Matematicheskoe modelirovanie, 22:9 (2010), 13–21

[7] Kvasov I. E., Petrov I. B., Sannikov A. V., Favorskaya A. V., “Kompyuternoe modelirovanie prostranstvennykh dinamicheskikh protsessov setochno-kharakteristicheskim metodom na nestrukturirovannykh tetraedralnykh setkakh”, Informatsionnye tekhnologii, 2011, no. 9, 28–30

[8] Kvasov I. E., Petrov I. B., Sannikov A. V., Favorskaya A. V., “Setochno-kharakteristicheskii metod vysokoi tochnosti na tetraedralnykh ierarkhicheskikh setkakh s kratnym shagom po vremeni”, Kompyuternye issledovaniya i modelirovanie, 3:1 (2012), 161–171