Standing waves in spline-wavelet decomposition of the first order
Matematičeskoe modelirovanie, Tome 25 (2013) no. 1, pp. 113-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the case of two-nested spline-wavelet decomposition of the first order a standing wave in wavelet flow is simulated. Therefore it is possible to reduce the wavelet flow up to two thirds of the mentioned wavelet flow. If initial flow is generated with a smooth function then the magnitude of wavelet flow coincide to magnitude of the second differential of the function.
Keywords: splines, approximation relations, wavelets, spline-wavelet decompositions, simulation of standing wave
Mots-clés : calibration relations, decomposition, reconstruction.
@article{MM_2013_25_1_a7,
     author = {Yu. K. Dem'yanovich},
     title = {Standing waves in spline-wavelet decomposition of the first order},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--119},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_1_a7/}
}
TY  - JOUR
AU  - Yu. K. Dem'yanovich
TI  - Standing waves in spline-wavelet decomposition of the first order
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 113
EP  - 119
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_1_a7/
LA  - ru
ID  - MM_2013_25_1_a7
ER  - 
%0 Journal Article
%A Yu. K. Dem'yanovich
%T Standing waves in spline-wavelet decomposition of the first order
%J Matematičeskoe modelirovanie
%D 2013
%P 113-119
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_1_a7/
%G ru
%F MM_2013_25_1_a7
Yu. K. Dem'yanovich. Standing waves in spline-wavelet decomposition of the first order. Matematičeskoe modelirovanie, Tome 25 (2013) no. 1, pp. 113-119. http://geodesic.mathdoc.fr/item/MM_2013_25_1_a7/

[1] Demyanovich Yu. K., “Minimalnye splainy i vspleski”, Vestnik SPbGU, 2008, no. 2, 8–22

[2] Demyanovich Yu. K., Makarov A. A., “Kalibrovochnye sootnosheniya dlya nepolinomialnykh splainov”, Problemy matematicheskogo analiza, 2006, no. 34, 39–54

[3] Demyanovich Yu. K., “Negladkie splain-veivletnye razlozheniya i ikh svoistva”, Zapiski nauchnykh seminarov POMI, 395, 2011, 31–60 | MR

[4] Demyanovich Yu. K., Miroshnichenko I. D., “Gnezdovye splain-veivletnye razlozheniya”, Problemy matematicheskogo analiza, 2012, no. 64, 51–61