CABARET scheme for two dimensional thermoconvection problem
Matematičeskoe modelirovanie, Tome 25 (2013) no. 1, pp. 33-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider two dimensional statement of thermoconvection problem in square domain. For model of heat conducting weakly compressible medium was proposed an explicit difference scheme of second order of approximation. Two standard tests were done with success. Mesh refining gave us convergence of solution. Results were compared with experimental data.
Keywords: natural convection, Davis test.
Mots-clés : CABARET scheme
@article{MM_2013_25_1_a2,
     author = {V. Kondakov},
     title = {CABARET scheme for two dimensional thermoconvection problem},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_1_a2/}
}
TY  - JOUR
AU  - V. Kondakov
TI  - CABARET scheme for two dimensional thermoconvection problem
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 33
EP  - 44
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_1_a2/
LA  - ru
ID  - MM_2013_25_1_a2
ER  - 
%0 Journal Article
%A V. Kondakov
%T CABARET scheme for two dimensional thermoconvection problem
%J Matematičeskoe modelirovanie
%D 2013
%P 33-44
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_1_a2/
%G ru
%F MM_2013_25_1_a2
V. Kondakov. CABARET scheme for two dimensional thermoconvection problem. Matematičeskoe modelirovanie, Tome 25 (2013) no. 1, pp. 33-44. http://geodesic.mathdoc.fr/item/MM_2013_25_1_a2/

[1] G. de Vahl Davis, “Natural convection of air in a square cavity: a benchmark numerical solution”, Int. J. Numer. Meth. Fluids, 1983, no. 2, 249–264 | Zbl

[2] P. Le Quéré, “Accurate solutions to the square thermally driven cavity at high Rayleigh number”, Comput. Fluids, 1991, no. 20, 29–41 | Zbl

[3] M. Hortmann, M. Perić, G. Scheuerer, “Finite volume multigrid prediction of laminar natural convection: benchmark solutions”, Int. J. Numerical Methods in Fluids, 1990, no. 11, 189–207 | DOI | Zbl