Modeling decay isotropic turbulence based on les
Matematičeskoe modelirovanie, Tome 25 (2013) no. 1, pp. 18-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the modeling of degeneration of isotropic turbulence. Simulation of a turbulent process is based on the filtered three-dimensional unsteady Navier–Stokes equations. For the closure of the main equation used viscous model. The problem is solved numerically, the equation of motion is solved by a modified method of fractional steps with compact scheme, the equation for pressure is solved by the Fourier method, in combination with a matrix factorization. The simulation obtained change of turbulent kinetic energy by time, micro-scale turbulence, change of longitudinal-transverse correlation functions, defined by longitudinal and transverse one-dimensional spectra.
Mots-clés : isotropic turbulence, microscale turbulence.
Keywords: Navier–Stokes equations, longitudinal-transverse correlation functions
@article{MM_2013_25_1_a1,
     author = {U. S. Abdibekov and B. T. Zhumagulov and D. B. Zhakebaev and K. Zh. Zhubat},
     title = {Modeling decay isotropic turbulence based on les},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {18--32},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_1_a1/}
}
TY  - JOUR
AU  - U. S. Abdibekov
AU  - B. T. Zhumagulov
AU  - D. B. Zhakebaev
AU  - K. Zh. Zhubat
TI  - Modeling decay isotropic turbulence based on les
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 18
EP  - 32
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_1_a1/
LA  - ru
ID  - MM_2013_25_1_a1
ER  - 
%0 Journal Article
%A U. S. Abdibekov
%A B. T. Zhumagulov
%A D. B. Zhakebaev
%A K. Zh. Zhubat
%T Modeling decay isotropic turbulence based on les
%J Matematičeskoe modelirovanie
%D 2013
%P 18-32
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_1_a1/
%G ru
%F MM_2013_25_1_a1
U. S. Abdibekov; B. T. Zhumagulov; D. B. Zhakebaev; K. Zh. Zhubat. Modeling decay isotropic turbulence based on les. Matematičeskoe modelirovanie, Tome 25 (2013) no. 1, pp. 18-32. http://geodesic.mathdoc.fr/item/MM_2013_25_1_a1/

[1] Monin A. S., Yaglom A. M., Statisticheskaya gidromekhanika, v. 2, Nauka, M., 1967, 720 pp.

[2] Khintse I. O., Turbulentnost, ee mekhanizm i teoriya, Fizmatgiz, M., 1963, 680 pp.

[3] Ferziger J. H., “Large eddy simulation of turbulent flows”, AIAA J., 15:9 (1977), 1261–1267 | DOI | Zbl

[4] Sagaut P., Large eddy simulation for incompressible flows, Springer-Verl., Heidelberg, 2002, 423 pp. | MR | Zbl

[5] Sirovich L., Smith L., Yakhot V., “Energy spectrum of homogeneous and isotropic turbulence in far dissipation range”, Physical Review Letters, 72:3 (1994), 344–347 | DOI

[6] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 230 pp. | MR

[7] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967, 196 pp.

[8] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980, 616 pp. | Zbl

[9] Abdibekov U. S., Zhumagulov B. T., Surapbergenov B. D., “Chislennoe modelirovanie turbulentnykh techenii metodom krupnykh vikhrei”, Vychislitelnye tekhnologii, 12:4, spetsialnyi vypusk (2007), 4–9 | Zbl

[10] Danaev N. T., Zhakebaev D. B., Abdibekov A. U., “Algorithm for solving nonstationary three-dimensional Navier–Stokes equations with large Reynolds numbers on multiprocessor systems”, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 115 (2011), 313–326 | DOI | MR

[11] Abdibekov U. S., Zhumagulov B. T., Zhakebaev D. B., “Numerical modeling of non-homogeneous turbulence on cluster computing system”, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 115 (2011), 327–338 | DOI | MR

[12] Ievlev V. M., Chislennoe modelirovanie turbulentnykh techenii, Nauka, M., 1990, 216 pp. | MR | Zbl

[13] Tennekes H., Lumley J. L., A first course in turbulence, MIT Press, Cambridge, Massachusetts, and London, England, 1972, 310 pp.

[14] Orszag S. A., Patterson G. S., “Numerical Simulation of Three-Dimensional Homogeneous Isotropic Turbulence”, Physical Review Letters, 28 (1972), 76–79 | DOI

[15] NACA TM, 1350, 1953 | MR

[16] Nicola de Divitiis, “Lyapunov analysis for fully developed homogeneous isotropic turbulence”, Theoretical and Computational Fluid Dynamics, 25:6, 421–445

[17] Goldstein D. E., Vasilyev O. V., Kevlahan N. K.-R., “CVS and SCALES simulation of 3-D isotropic turbulence”, Journal of Turbulence, 6:37 (2005)

[18] De Stefano G., Goldstein D. E., Vasilyev O. V., “On the role of sub-grid scale coherent modes in large eddy simulation”, Journal of Fluid Mechanics, 525 (2005), 263–274 | DOI | Zbl

[19] Schneider K., Vasilyev O. V., “Wavelet Methods in Computational Fluid Dynamics”, Ann. Rev. Fluid Mech., 42 (2010), 473–503 | DOI | MR | Zbl