Numerical simulation of the ionospheric plasma diffusion along the dipolar geomagnetic field under a transversal drift
Matematičeskoe modelirovanie, Tome 25 (2013) no. 1, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for numerical simulation of the nonstationary transport equations of the ionospheric plasma in the drifting dipolar geomagnetic tubes of any size is presented. The processes of ion production and loss, the ambipolar diffusion of ionospheric plasma along geomagnetic field lines, the interaction with the horizontal atmospheric wind and transverse drift due to electric field of the magnetospheric convection are taking into account in the basic equations. We describe how to convert the partial differential equations to conservation form. To solve the obtained equations with given boundary conditions the stable difference scheme has been constructed. The counter flux-sweeping algorithm is used as the solver of the difference scheme. Some results of modeling the electron density variations in the ionosphere and the plasmasphere are presented.
Keywords: ionosphere, plasmasphere, dipolar geomagnetic field, transverse drift, numerical simulation.
@article{MM_2013_25_1_a0,
     author = {A. V. Tashchilin and E. B. Romanova},
     title = {Numerical simulation of the ionospheric plasma diffusion along the dipolar geomagnetic field under a transversal drift},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_1_a0/}
}
TY  - JOUR
AU  - A. V. Tashchilin
AU  - E. B. Romanova
TI  - Numerical simulation of the ionospheric plasma diffusion along the dipolar geomagnetic field under a transversal drift
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 3
EP  - 17
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_1_a0/
LA  - ru
ID  - MM_2013_25_1_a0
ER  - 
%0 Journal Article
%A A. V. Tashchilin
%A E. B. Romanova
%T Numerical simulation of the ionospheric plasma diffusion along the dipolar geomagnetic field under a transversal drift
%J Matematičeskoe modelirovanie
%D 2013
%P 3-17
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_1_a0/
%G ru
%F MM_2013_25_1_a0
A. V. Tashchilin; E. B. Romanova. Numerical simulation of the ionospheric plasma diffusion along the dipolar geomagnetic field under a transversal drift. Matematičeskoe modelirovanie, Tome 25 (2013) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/MM_2013_25_1_a0/

[1] Krinberg N. A., Taschilin A. V., Ionosfera i plazmosfera, Nauka, M., 1984, 189 pp.

[2] Bryunelli B. E., Namgaladze A. A., Fizika ionosfery, Nauka, M., 1988, 528 pp.

[3] Schunk R. W., Nagy A. F., Ionospheres: Physics, Plasma physics, and Chemistry, Second edition, Cambridge University Press, New York, 2009, 628 pp.

[4] Lemaire J. F., Gringauz K. I., The Earth's plasmasphere, Cambridge University Press, 1998, 350 pp.

[5] Quegan S., Bailey G. J., Moffett R. J., Heelis R. A., Fuller-Rowell T. J., Rees D., Spiro R. W., “A theoretical study of the distribution of ionization in the high-latitude ionosphere and the plasmasphere: first results on the mid-latitude trough and the light-ion trough”, J. Atmos. Terr. Phys., 44:7 (1982), 619–640 | DOI

[6] Huba J. C., Joyce G., Fedder J. A., “Sami2 is another model of the ionosphere (SAMI2): a new low-latitude ionosphere model”, J. Geophys. Res. A, 105,:10 (2000), 23035–23053 | DOI

[7] Schunk R. W. (ed.), STEP: Handbook of Ionospheric Models, Utah State University, Logan, 1996, 295 pp.

[8] Oran E., Boris Dzh., Chislennoe modelirovanie reagiruyuschikh potokov, Mir, M., 1990, 660 pp. | MR

[9] Grigorev S. A., Latyshev K. S., “Chislennye metody v odnomernykh modelyakh ionosfery”, Matematicheskoe modelirovanie, 1:8 (1989), 84–98

[10] Singh N., Horwitz J. L., “Plasmasphere refilling: Recent observations and modeling”, J. Geophys. Res. A, 97:2 (1992), 1049–1079 | DOI

[11] Tashchilin A. V., Romanova E. B., “Numerical modeling the high-latitude ionosphere”, Proceeding of COSPAR Colloquia Series, 14 (2002), 315–325 | DOI

[12] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971, 552 pp. | MR | Zbl

[13] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1992, 424 pp. | MR

[14] Picone J. M., Hedin A. E., Drob D. P., Aikin A. C., “NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues”, J. Geophys. Res. A, 107:12 (2002), 1468–1483 | DOI

[15] Drob D. P., Emmert J. T., Crowley G., Picone J. M., Shepherd G. G., Skinner W., Hays P., Niciejewski R. J., Larsen M., She C. Y., Meriwether J. W., Hernandez G., Jarvis M. J., Sipler D. P., Tepley C. A., O'Brien M. S., Bowman J. R., Wu Q., Murayama Y., Kawamura S., Reid I. M., Vincent R. A., “An empirical model of the Earth's horizontal wind fields: HWM07”, J. Geophys. Res., 113 (2008), A12304 | DOI

[16] Emmert J. T., Drob D. P., Shepherd G. G., Hernandez G., Jarvis M. J., Meriwether J. W., Niciejewski R. J., Sipler D. P., Tepley C. A., “DWM07 global empirical model of upper thermospheric storm-induced disturbance winds”, J. Geophys. Res., 113 (2008), A11319 | DOI

[17] Richards P. G., Fennelly J. A., Torr D. G., “EUVAC: A solar EUV flux model for aeronomic calculations”, J. Geophys. Res. A, 99:5 (1994), 8981–8992 | DOI

[18] Tu J., Song P., Reinisch B. W., Green J. L., Huang X., “Empirical specification of field-aligned plasma density profiles for plasmasphere refilling”, J. Geophys. Res., 111 (2006), A06216 | DOI