Mathematical modelling of waves in layered media nearby a caustic
Matematičeskoe modelirovanie, Tome 25 (2013) no. 12, pp. 83-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of modeling of scattered wave-fields nearby a caustic in acoustic medium in a non-stationary statement are considered. The mathematical model allowing explicitly select caustic as boundary of solution domain for arbitrary change of sound speed is offered. The еffectively realized boundary condition such as limited solution (pressure) on a caustic is established and Green's function of the boundary-value problem is constructed. The auxiliary Goursat's problem is considered and, on the basis of hypergeometric functions, the system of its partial solutions is constructed. The integral Volterra equation with respect to the Green's function is received and the algorithm of its expansion in terms of smoothness is specified. We propose a finite-difference scheme approximating the solution of the differential problem with an unlimited coefficient. The results of numerical modeling are presented.
Keywords: acoustic equation, a caustic, boundary-value condition of limited solution type, hypergeometric functions, Green's function, a finite-difference scheme.
Mots-clés : Goursat's problem, Volterra equation
@article{MM_2013_25_12_a6,
     author = {A. V. Baev},
     title = {Mathematical modelling of waves in layered media nearby a caustic},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--102},
     publisher = {mathdoc},
     volume = {25},
     number = {12},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_12_a6/}
}
TY  - JOUR
AU  - A. V. Baev
TI  - Mathematical modelling of waves in layered media nearby a caustic
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 83
EP  - 102
VL  - 25
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_12_a6/
LA  - ru
ID  - MM_2013_25_12_a6
ER  - 
%0 Journal Article
%A A. V. Baev
%T Mathematical modelling of waves in layered media nearby a caustic
%J Matematičeskoe modelirovanie
%D 2013
%P 83-102
%V 25
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_12_a6/
%G ru
%F MM_2013_25_12_a6
A. V. Baev. Mathematical modelling of waves in layered media nearby a caustic. Matematičeskoe modelirovanie, Tome 25 (2013) no. 12, pp. 83-102. http://geodesic.mathdoc.fr/item/MM_2013_25_12_a6/

[1] Goldin S. V., Duchkov A. A., “Seismicheskoe volnovoe pole vblizi kaustik: analiz vo vremennoi oblasti”, Fizika Zemli, 2002, no. 7, 56–66

[2] Yanovskaya T. B., Geiger M. A., “Chislennyi metod rascheta polya poverkhnostnoi volny pri nalichii kaustik”, Fizika Zemli, 2007, no. 8, 35–43

[3] Terenteva E. B., “Otsenka pogreshnostei luchevogo metoda pri raschete sinteticheskikh seismogramm v usloviyakh morskoi seismorazvedki”, Vestn. Mosk. un-ta. Ser. 4. Geologiya, 2001, no. 4, 69–71

[4] Burridge R., “Asymptotic evaluation of integrals related to time-domain fields near caustics”, SIAM J. Appl. Math., 55:2 (1995), 390–409 | DOI | Zbl

[5] Klem-Musatov K. D., Aizenberg A. M., Helle H. B., Pajchel J., “Reflection and transmission at curvilinear interface in terms of surface integrals”, Wave Motion, 39 (2004), 77–92 | DOI | Zbl

[6] Popov M. M., Oliveira S., “Some limitations for the applicability of the ray method in elastodynamics”, Brazilian Journal of Geophysics, 15:3 (1997), 225–235

[7] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1988, 736 pp.

[8] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972, 456 pp.

[9] Belishev M. I., Blagoveschenskii A. S., Dinamicheskie obratnye zadachi teorii voln, Izd-vo S.-Peterburgskogo universiteta, SPb., 1999, 268 pp.

[10] Baev A. V., Kutsenko N. V., “Reshenie zadachi vosstanovleniya koeffitsienta dissipitsii variatsionnym metodom”, Zhurn. vychisl. matem. i matem. fiziki, 46:10 (2006), 1895–1906

[11] Nikiforov A. F., Uvarov V. B., Osnovy teorii spetsialnykh funktsii, Nauka, M., 1974, 304 pp.

[12] Baev A. V., “Ob odnom metode resheniya obratnoi zadachi rasseyaniya dlya volnovogo uravneniya”, Zhurn. vychisl. matem. i matem. fiziki, 28:1 (1988), 25–33

[13] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | Zbl