3D3V kinetic code CFHall for magnetized plasma simulation
Matematičeskoe modelirovanie, Tome 25 (2013) no. 11, pp. 98-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

Despite the existence of massively parallel codes and their application to plasma simulation, in the field of computer simulations the unsolved problems still remain. This leads to the necessity of various approximations, for example, decreasing of the simulation dimension and physical parameter calibrations. While aiming for the maximal efficiency of computational algorithms it is possible to manage without the majority of popular approximations and to broaden the applicability limits of the numerical research. Such possibility arises with the use of the Locally Recursive non-Locally Asynchronous (LRnLA) algorithms as the base for a program code. This was used as a basis for CFHALL plasma simulation code development. CFHALL is presented in this work along with the description of the underlying algorithms. The applicability of the CFHALL to plasma instability simulation is demonstrated on the example of weibel instability simulation.
Keywords: plasma simulation, PIC method, LRnLA algorithms.
Mots-clés : FDTD
@article{MM_2013_25_11_a7,
     author = {A. Yu. Perepelkina and V. D. Levchenko and I. A. Goryachev},
     title = {3D3V kinetic code {CFHall} for magnetized plasma simulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {98--110},
     publisher = {mathdoc},
     volume = {25},
     number = {11},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_11_a7/}
}
TY  - JOUR
AU  - A. Yu. Perepelkina
AU  - V. D. Levchenko
AU  - I. A. Goryachev
TI  - 3D3V kinetic code CFHall for magnetized plasma simulation
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 98
EP  - 110
VL  - 25
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_11_a7/
LA  - ru
ID  - MM_2013_25_11_a7
ER  - 
%0 Journal Article
%A A. Yu. Perepelkina
%A V. D. Levchenko
%A I. A. Goryachev
%T 3D3V kinetic code CFHall for magnetized plasma simulation
%J Matematičeskoe modelirovanie
%D 2013
%P 98-110
%V 25
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_11_a7/
%G ru
%F MM_2013_25_11_a7
A. Yu. Perepelkina; V. D. Levchenko; I. A. Goryachev. 3D3V kinetic code CFHall for magnetized plasma simulation. Matematičeskoe modelirovanie, Tome 25 (2013) no. 11, pp. 98-110. http://geodesic.mathdoc.fr/item/MM_2013_25_11_a7/

[1] Sigov Yu. S., Vychislitelnyi eksperiment: most mezhdu proshlym i buduschim fiziki plazmy. Izbrannye trudy, Fizmatlit, M., 2001

[2] Fox Justin M., Advances in Fully-Kinetic PIC Simulations of a Near Vacuum Hall Thruster and Other Plasma Systems, Ph. D. thesis, Massachusetts Institute of Technology, 2007

[3] Levchenko V. D., “Asinkhronnye parallelnye algoritmy kak sposob dostizheniya effektivnosti vychislenii”, Informatsionnye tekhnologii i vychislitelnye sistemy, 1 (2005), 68

[4] Levchenko V. D., Perepelkina A. Yu., “3D3V-modelirovanie vzaimodeistviya pikosekundnykh lazernykh impulsov s podkriticheskim plazmennym sloem”, Zababakhinskie nauchnye chteniya, Sbornik materialov XI Mezhdunarodnoi konferentsii (g. Snezhinsk, 2012)

[5] Goryachev I. A., Levchenko V. D., Perepelkina A. Yu., “Trekhmernaya polnostyu kineticheskaya chislennaya model zamagnichennoi plazmy kanala khollovskogo dvigatelya”, Tezisy dokladov XXXIX Mezhdunarodnoi (Zvenigorodskoi) konferentsii po fizike plazmy i UTS (g. Zvenigorod, 2012)

[6] Morton G. M., A Computer Oriented Geodetic Data Base and a New Technique in File Sequencing, International Business Machines Company, 1966; Intel 64 and IA-32 Architectures Developer's Manual, Intel, 2012 | Zbl

[7] Levchenko V. D., Zakirov A. V., Effektivnyi algoritm dlya trekhmernogo modelirovaniya rasprostraneniya elektromagnitnykh voln v fonovykh kristallakh, Preprint IPM im. M. V. Keldysha RAN, 2005

[8] Perepelkina A. Yu., Polnostyu kineticheskaya trekhmernaya model plazmy khollovskogo dvigatelya, magisterskaya dissertatsiya, NIYaU MIFI, 2011

[9] Fried B. D., “Mechanism for Instability of Transverse Plasma Waves”, Physics of Fluids, 2 (1959), 337 | DOI | MR

[10] Ricardo A. Fonseca, Luis O. Silva, John W. Tonge et al., “Three-dimensional Weibel instability in astrophysical scenarios”, Physics of Plasmas, 10:5 (2003), 1979–1984 | DOI | MR