Error estimation for the diffusion equation solution based on the schemes with weights
Matematičeskoe modelirovanie, Tome 25 (2013) no. 11, pp. 53-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In applied problems it is often necessary to solve diffusion equation. The most efficient methods for solving such types of problems are grid methods that, nevertheless, have an approximation error. In the given paper a linear diffusion equation with variable coefficients is considered, for which estimation for error of approximation by scheme with weights is obtained. A method for the calculation of the optimal weight, which provides a minimum error for the given value of the grid spacing, is developed.
Keywords: diffusion equation; schemes with weights; approximation error.
@article{MM_2013_25_11_a4,
     author = {A. I. Sukhinov and A. E. Chistyakov and A. V. Shishenya},
     title = {Error estimation for the diffusion equation solution based on the schemes with weights},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {53--64},
     publisher = {mathdoc},
     volume = {25},
     number = {11},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_11_a4/}
}
TY  - JOUR
AU  - A. I. Sukhinov
AU  - A. E. Chistyakov
AU  - A. V. Shishenya
TI  - Error estimation for the diffusion equation solution based on the schemes with weights
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 53
EP  - 64
VL  - 25
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_11_a4/
LA  - ru
ID  - MM_2013_25_11_a4
ER  - 
%0 Journal Article
%A A. I. Sukhinov
%A A. E. Chistyakov
%A A. V. Shishenya
%T Error estimation for the diffusion equation solution based on the schemes with weights
%J Matematičeskoe modelirovanie
%D 2013
%P 53-64
%V 25
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_11_a4/
%G ru
%F MM_2013_25_11_a4
A. I. Sukhinov; A. E. Chistyakov; A. V. Shishenya. Error estimation for the diffusion equation solution based on the schemes with weights. Matematičeskoe modelirovanie, Tome 25 (2013) no. 11, pp. 53-64. http://geodesic.mathdoc.fr/item/MM_2013_25_11_a4/

[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl

[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[3] Sukhinov A. I., Dvumernye skhemy rasschepleniya i nekotorye ikh prilozheniya, MAKS Press, M., 2005, 408 pp.

[4] Chistyakov A. E., “Trekhmernaya model dvizheniya vodnoi sredy v Azovskom more s uchetom transporta solei i tepla”, Izvestiya YuFU. Tekhnicheskie nauki, 2009, no. 8(97), Tematicheskii vypusk «Aktualnye problemy matematicheskogo modelirovaniya», 75–82

[5] Sukhinov A. I., Chistyakov A. E., Alekseenko E. V., “Chislennaya realizatsiya trekhmernoi modeli gidrodinamiki dlya melkovodnykh vodoemov na supervychislitelnoi sisteme”, Matematicheskoe modelirovanie, 23:3 (2011), 3–21

[6] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR

[7] Ladonkina M. E., Neklyudova O. A., Tishkin V. F., Chevanin V. S., “Ob odnom variante suschestvenno neostsilliruyuschikh raznostnykh skhem vysokogo poryadka tochnosti dlya sistem zakonov sokhraneniya”, Matem. modelirovanie, 21:11 (2009), 19–32

[8] Ladonkina M. E., Milyukova O. Yu., Tishkin V. F., “Chislennyi metod resheniya uravnenii diffuzionnogo tipa na osnove ispolzovaniya mnogosetochnogo metoda”, Zh. vychisl. matem. i matem. fiz., 50:8 (2010), 1438–1461 | MR | Zbl