Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2013_25_11_a1, author = {S. V. Bogomolov and I. G. Gudich}, title = {Towards a stochastic diffusion gas model verification}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {17--32}, publisher = {mathdoc}, volume = {25}, number = {11}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2013_25_11_a1/} }
S. V. Bogomolov; I. G. Gudich. Towards a stochastic diffusion gas model verification. Matematičeskoe modelirovanie, Tome 25 (2013) no. 11, pp. 17-32. http://geodesic.mathdoc.fr/item/MM_2013_25_11_a1/
[1] B. N. Chetverushkin, Kineticheski-soglasovannye skhemy v gazovoi dinamike, Izd-vo Mosk. un-ta, M., 1999
[2] A. V. Skorokhod, Stokhasticheskie uravneniya dlya slozhnykh sistem, Nauka, M., 1983 | MR
[3] A. A. Arsenev, “O priblizhenii resheniya uravneniya Boltsmana resheniyami stokhasticheskikh differentsialnykh uravnenii Ito”, ZhVMiMF, 27:3 (1987), 400–410 | MR | Zbl
[4] S. V. Bogomolov, “Ob odnom podkhode k polucheniyu stokhasticheskikh modelei gazodinamiki”, DAN, 423:4 (2008), 458–461
[5] S. V. Bogomolov, “Uravneniya kvazigazodinamiki”, Matematicheskoe modelirovanie, 21:12 (2009), 145–151 | MR | Zbl
[6] S. V. Bogomolov, L. V. Dorodnitsyn, “Uravneniya stokhasticheskoi kvazigazodinamiki. Sluchai vyazkogo gaza”, Matematicheskoe modelirovanie, 22:12 (2010), 49–64
[7] V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, A. F. Turbin, Spravochnik po teorii veroyatnostei i matematicheskoi statistike, Nauka, M., 1985 | MR | Zbl
[8] S. Chandrasekhar, “Stochastic Problems in Physics and Astronomy”, Rev. Modern. Phys., 15:1 (1943), 1 | DOI | MR | Zbl
[9] J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes”, J. Chem. Phys., 14:3 (1946), 180 | DOI
[10] C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York, 1988 | MR | Zbl
[11] B. Oksendal, Stokhasticheskie differentsialnye uravneniya, Mir, M., 2003
[12] V. V. Aristov, S. A. Zabelok, “A deterministic method for solving the Boltzmann equation with parallel computations”, Zh. Vychisl. Mat. Mat. Fiz., 42:3 (2002), 425–437 | MR | Zbl
[13] P. Asinari, “Nonlinear Boltzmann equation for the homogeneous isotropic case: Minimal deterministic Matlab program”, Comput. Phys. Commun., 181 (2010), 1776 | DOI | MR | Zbl
[14] P. Jenny, M. Torrilhon, S. Heinz, “A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion”, Journal of Computational Physics, 229 (2010), 1077–1098 | DOI | MR | Zbl
[15] M. H. Gorji, M. Torrilhon, P. Jenny, “Fokker–Planck model for computational studies of monatomic rarefied gas flows”, J. Fluid Mech., 680 (2011), 574–601 | DOI | MR | Zbl
[16] M. F. Ivanov, V. A. Galburt, “Stokhasticheskii podkhod k chislennomu resheniyu uravneniya Fokkera–Planka”, Matematicheskoe modelirovanie, 20:11 (2008), 3–27 | MR
[17] S. V. Bogomolov, I. G. Gudich, “O diffuzionnoi modeli gaza v fazovom prostranstve pri umerennykh chislakh Knudsena”, Matematicheskoe modelirovanie, 24:8 (2012), 45–64 | Zbl
[18] L. M. Zaks, V. Yu. Korolev, “Obobschennye giperbolicheskie raspredeleniya kak predelnye dlya sluchainykh summ”, Informatika i ee primeneniya, 7:1 (2013), 105–115
[19] B. N. Chetverushkin, A. V. Gulin, “Explicit Schemes and Numerical Simulation Using Ultrahigh Performance Computer Systems”, Doklady Mathematics, 86:2 (2012), 681–683 | DOI | MR | Zbl