Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2013_25_10_a8, author = {A. N. Baushev and A. T. Osminin and L. A. Osminin}, title = {Mathematical model of multi-phase railway freight}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {108--122}, publisher = {mathdoc}, volume = {25}, number = {10}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2013_25_10_a8/} }
TY - JOUR AU - A. N. Baushev AU - A. T. Osminin AU - L. A. Osminin TI - Mathematical model of multi-phase railway freight JO - Matematičeskoe modelirovanie PY - 2013 SP - 108 EP - 122 VL - 25 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2013_25_10_a8/ LA - ru ID - MM_2013_25_10_a8 ER -
A. N. Baushev; A. T. Osminin; L. A. Osminin. Mathematical model of multi-phase railway freight. Matematičeskoe modelirovanie, Tome 25 (2013) no. 10, pp. 108-122. http://geodesic.mathdoc.fr/item/MM_2013_25_10_a8/
[1] Smetanin A. I., Tekhnicheskoe normirovanie ekspluatatsionnoi raboty zheleznykh dorog, Transport, M., 1984, 295 pp.
[2] Basaker R., Saati T., Konechnye grafy i seti, Nauka, M., 1974 | MR
[3] Baushev A. N., Gadasina L. V., Optimizatsionnye zadachi na setyakh, Uch. posobie, PGUPS, SPb., 2010, 137 pp.
[4] Bushwacker R. G., Gowen P. J., A procedure for determining a family of minimal-cost network flow patterns, Technical Rep., No 15, ORO, 1961
[5] Kovalev V. I., Organizatsiya vagonopotokov na seti zheleznykh dorog Rossii v usloviyakh reformirovaniya otrasli, Vybor, SPb., 2002, 143 pp.
[6] Khachiyan L. G., Slozhnost zadach lineinogo programmirovaniya, Znanie, M., 1987, 32 pp. | MR