Computations with inverse Runge--Kutta schemes
Matematičeskoe modelirovanie, Tome 25 (2013) no. 10, pp. 79-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

New subclass of fully implicit Runge–Kutta schemes is considered. This subclass has outstanding accuracy and stability characteristics. Implementation details of iterative algorithm for solving stiff systems of ODE and differential-algebraic systems with inverse Runge–Kutta schemes are described.
Keywords: stiff systems, differential-algebraic systems, implicit Runge–Kutta schemes.
@article{MM_2013_25_10_a6,
     author = {N. N. Kalitkin and I. P. Poshivaylo},
     title = {Computations with inverse {Runge--Kutta} schemes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--96},
     publisher = {mathdoc},
     volume = {25},
     number = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_10_a6/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - I. P. Poshivaylo
TI  - Computations with inverse Runge--Kutta schemes
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 79
EP  - 96
VL  - 25
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_10_a6/
LA  - ru
ID  - MM_2013_25_10_a6
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A I. P. Poshivaylo
%T Computations with inverse Runge--Kutta schemes
%J Matematičeskoe modelirovanie
%D 2013
%P 79-96
%V 25
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_10_a6/
%G ru
%F MM_2013_25_10_a6
N. N. Kalitkin; I. P. Poshivaylo. Computations with inverse Runge--Kutta schemes. Matematičeskoe modelirovanie, Tome 25 (2013) no. 10, pp. 79-96. http://geodesic.mathdoc.fr/item/MM_2013_25_10_a6/

[1] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[2] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[3] Alshina E. A., Zaks E. M., Kalitkin N. N., “Optimalnye parametry yavnykh skhem Runge–Kutty nevysokikh poryadkov”, Matem. modelirovanie, 18:2 (2006), 61–71 | MR | Zbl

[4] Kalitkin N. N., Kuzmina L. V., Integrirovanie zhestkikh sistem differentsialnykh uravnenii, preprint No 80, IPM im. M. V. Keldysha, 1981, 23 pp. | MR

[5] Alshin A. B., Alshina E. A., Limonov A. G., “Dvukhstadiinye kompleksnye skhemy Rozenbroka dlya zhestkikh sistem”, ZhVMiMF, 49:2 (2009), 270–287 | MR

[6] Shirkov P. D., “Optimalno zatukhayuschie skhemy s kompleksnymi koeffitsientami dlya zhestkikh sistem ODU”, Matem. modelirovanie, 4:8 (1992), 47–57 | MR | Zbl

[7] Kalitkin N. N., Poshivailo I. P., “O vychislenii prostykh i kratnykh kornei nelineinogo uravneniya”, Matem. modelirovanie, 20:7 (2008), 57–64 | MR | Zbl

[8] Poshivailo I. P., “Usechennyi mnogomernyi metod Nyutona”, Matem. modelirovanie, 24:1 (2012), 103–108 | MR

[9] Samarskii A. A., Sobol I. M., “Primery chislennogo rascheta temperaturnykh voln”, ZhVMiMF, 3:4 (1963), 702–719 | MR

[10] Kalitkin N. N., Ritus I. V., Kompleksnaya skhema resheniya parabolicheskikh sistem, preprint No 32, IPM im. M. V. Keldysha, 1981, 31 pp. | MR

[11] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1964), 329–330 | DOI | MR