Using the incomplete ILU decomposition for convection-diffusion processes modeling in anisotropic media
Matematičeskoe modelirovanie, Tome 24 (2012) no. 9, pp. 125-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three-dimensional stationary convection-diffusion problem with mixed derivatives, describing convective-diffusion processes in anisotropic media, is considered. The problem solution in an anisotropic medium is of considerable interest for various models. The upwind finite-difference approximation of this problem is held at thirteen point pattern. Sufficient conditions for the matrix of the system of linear algebraic equations (SLAE), obtained after the natural ordering of nodes of the grid area, to be an M-matrix, are proved. The method of ILU decomposition, which converges for M-matrices, is used for the numerical solution of SLAE. Numerical experiments, which showed the effectiveness of the method for solving convection-diffusion problem in both isotropic and anisotropic medium, have been carried out. The disadvantage of the used method is the restriction on the coefficients on mixed derivatives. Obtained as a result of theoretical studies, this restriction is a part of a set of sufficient conditions for M-matrix operator.
Mots-clés : сonvection-diffusion equation, ILU-decomposition.
Keywords: anisotropic media
@article{MM_2012_24_9_a9,
     author = {S. A. Vinogradova and L. A. Krukier},
     title = {Using the incomplete {ILU} decomposition for convection-diffusion processes modeling in anisotropic media},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {125--136},
     publisher = {mathdoc},
     volume = {24},
     number = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_9_a9/}
}
TY  - JOUR
AU  - S. A. Vinogradova
AU  - L. A. Krukier
TI  - Using the incomplete ILU decomposition for convection-diffusion processes modeling in anisotropic media
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 125
EP  - 136
VL  - 24
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_9_a9/
LA  - ru
ID  - MM_2012_24_9_a9
ER  - 
%0 Journal Article
%A S. A. Vinogradova
%A L. A. Krukier
%T Using the incomplete ILU decomposition for convection-diffusion processes modeling in anisotropic media
%J Matematičeskoe modelirovanie
%D 2012
%P 125-136
%V 24
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_9_a9/
%G ru
%F MM_2012_24_9_a9
S. A. Vinogradova; L. A. Krukier. Using the incomplete ILU decomposition for convection-diffusion processes modeling in anisotropic media. Matematičeskoe modelirovanie, Tome 24 (2012) no. 9, pp. 125-136. http://geodesic.mathdoc.fr/item/MM_2012_24_9_a9/

[1] Shibaev V. P., “Neobychnye kristally ili zagadochnye zhidkosti”, Sorosovskii obrazovatelnyi zhurnal, 1996, no. 11, 37–46

[2] Snarskii A. A., Palti A. M., Ascheulov A. A., “Anizotropnye termoelementy”, Fizika i tekhnika poluprovodnikov, 31:11 (1997), 1291–1298

[3] Tolpaev V. A., Filtratsiya zhidkosti v anizotropnykh i neodnorodnykh gruntakh, Izd-vo Severo-Kavk. gosud. tekhn. un-ta, Stavropol, 2000, 196 pp.

[4] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999, 248 pp.

[5] Morton K. W., Numerical solution of convection-diffusion problems, Chapman Hall, London, 1996, 384 pp. | MR | Zbl

[6] Gupta M. M., Zhang J., “High accuracy multigrid solution of the 3D convection-diffusion equation”, Applied Mathematics and Computation, 2000, no. 113, 249–274 | DOI | MR

[7] Kuznetsov Y., Lipnikov K., Shashkov M., “The mimetic finite difference method on polygonal meshes for diffusion-type problems”, Computational Geosciences, 2004, no. 8, 301–324 | DOI | MR

[8] Krukier L. A., Martynova T. S., Chislennye metody resheniya zadach konvektsii-diffuzii so smeshannymi proizvodnymi, Izdatelstvo RGU, Rostov-na-Donu, 2003, 153 pp.

[9] Zhang J., “Preconditioned iterative methods and finite difference schemes for convection-diffusion”, Applied Mathematics and Computation, 2000, no. 109, 11–30 | DOI | MR | Zbl

[10] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980, 618 pp. | Zbl

[11] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR | Zbl

[12] Vinogradova S. A., Krukier L. A., “Reshenie trekhmernoi statsionarnoi zadachi konvektsii-diffuzii v anizotropnoi srede metodom nepolnogo LU-razlozheniya”, Sovremennye problemy matematicheskogo modelirovaniya, Trudy XIV Molodezhnoi konferentsii-shkoly s mezhdunarodnym uchastiem (pos. Dyurso, 12–17 sentyabrya 2011 g.), 74–90

[13] Meurant G., Computer solution of large linear systems, ELSEVIER, Amsterdam, 1999, 753 pp. | MR | Zbl

[14] Saad Y., Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003, 547 pp. | MR

[15] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp. | MR