Theory of parametric sensitivity of eigenfrequencies and its application to the stability analysis
Matematičeskoe modelirovanie, Tome 24 (2012) no. 9, pp. 113-124

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions of organising computations in spectral numerical-analytical methods of solving differential-algebraic equations systems and counting parametric root sensitivities of orders 1 and 2 of Windows-version tool SimStar/Win as spectral problems on matrix pencils are considered. Problems of computational process decomposition are examined. Computational complexity is determined. Comparison to Lancaster–Chu–Andrew method is held.
Keywords: parametric root sensitivity, spectral problems on matrix pencils, differential-algebraic equations systems.
@article{MM_2012_24_9_a8,
     author = {V. B. Mikhailov and V. V. Rumjantsev},
     title = {Theory of parametric sensitivity of eigenfrequencies and its application to the stability analysis},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--124},
     publisher = {mathdoc},
     volume = {24},
     number = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_9_a8/}
}
TY  - JOUR
AU  - V. B. Mikhailov
AU  - V. V. Rumjantsev
TI  - Theory of parametric sensitivity of eigenfrequencies and its application to the stability analysis
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 113
EP  - 124
VL  - 24
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_9_a8/
LA  - ru
ID  - MM_2012_24_9_a8
ER  - 
%0 Journal Article
%A V. B. Mikhailov
%A V. V. Rumjantsev
%T Theory of parametric sensitivity of eigenfrequencies and its application to the stability analysis
%J Matematičeskoe modelirovanie
%D 2012
%P 113-124
%V 24
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_9_a8/
%G ru
%F MM_2012_24_9_a8
V. B. Mikhailov; V. V. Rumjantsev. Theory of parametric sensitivity of eigenfrequencies and its application to the stability analysis. Matematičeskoe modelirovanie, Tome 24 (2012) no. 9, pp. 113-124. http://geodesic.mathdoc.fr/item/MM_2012_24_9_a8/