On monotony of two layer in time cabaret scheme
Matematičeskoe modelirovanie, Tome 24 (2012) no. 9, pp. 97-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The monotony analysis of two-layer in time cabaret scheme is carried out. It is shown that there is no local unitary correction of flux variables which would provide monotony of this scheme at any monotonous initial data. It is offered a modification of two-layer in time cabaret scheme, connected with double correction of flux variables, which in case of a variable time step guarantees monotony of the scheme at any Currant numbers at which it is stable. The results of the test calculations illustrating advantages of the modified scheme are listed.
Keywords: two-layer in time cabaret scheme
Mots-clés : monotony, correction of flux variables.
@article{MM_2012_24_9_a7,
     author = {O. A. Kovyrkina and V. V. Ostapenko},
     title = {On monotony of two layer in time cabaret scheme},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--112},
     publisher = {mathdoc},
     volume = {24},
     number = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_9_a7/}
}
TY  - JOUR
AU  - O. A. Kovyrkina
AU  - V. V. Ostapenko
TI  - On monotony of two layer in time cabaret scheme
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 97
EP  - 112
VL  - 24
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_9_a7/
LA  - ru
ID  - MM_2012_24_9_a7
ER  - 
%0 Journal Article
%A O. A. Kovyrkina
%A V. V. Ostapenko
%T On monotony of two layer in time cabaret scheme
%J Matematičeskoe modelirovanie
%D 2012
%P 97-112
%V 24
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_9_a7/
%G ru
%F MM_2012_24_9_a7
O. A. Kovyrkina; V. V. Ostapenko. On monotony of two layer in time cabaret scheme. Matematičeskoe modelirovanie, Tome 24 (2012) no. 9, pp. 97-112. http://geodesic.mathdoc.fr/item/MM_2012_24_9_a7/

[1] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[2] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[3] Goloviznin V. M., “Balansno-kharakteristicheskii metod chislennogo resheniya uravnenii gazovoi dinamiki”, Dokl. RAN, 403:4 (2005), 1–6 | MR

[4] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comp. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl

[5] Goloviznin V. M., Samarskii A. A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100 | MR | Zbl

[6] Goloviznin V. M., Samarskii A. A., “Nekotorye svoistva raznostnoi skhemy «Kabare»”, Matem. modelirovanie, 10:1 (1998), 101–116 | MR | Zbl

[7] Karabasov S. A., Goloviznin V. M., “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA J., 45:12 (2007), 2861–2871 | DOI

[8] Karabasov S. A., Berloff P. S., Goloviznin V. M., “Cabaret in the ocean gyres”, Ocean Modelling, 30:2 (2009), 155–168 | DOI

[9] Ostapenko V. V., “O monotonnosti balansno-kharakteristicheskoi skhemy”, Matem. modelirovanie, 21:7 (2009), 29–42 | MR | Zbl

[10] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sbornik, 47:3 (1959), 271–306 | MR | Zbl

[11] Kroener D., Numerical schemes for conservation laws, Wiley, Leipzig, Germany; Teubner, 1997 | MR | Zbl

[12] Ostapenko V. V., “Ob ekvivalentnykh opredeleniyakh ponyatiya konservativnosti dlya konechno-raznostnykh skhem”, Zh. vychisl. matem. i matem. fiziki, 29:8 (1989), 1114–1128 | MR